11,668 research outputs found

    Furthur development of the dynamic gas temperature measurement system

    Get PDF
    Candidate concepts capable of generating dynamic temperatures were identified and analyzed for use in verifying experimentally the frequency response of the dynamic gas temperature measurement system. A rotating wheel concept and one other concept will be selected for this purpose. Modifications to the data reduction code algorithms developed were identified and evaluated to reduce substantially the data reduction execution time. These modifications will be incorporated in a new data reduction program to be written in FORTRAN IV

    Further development of the dynamic gas temperature measurement system

    Get PDF
    The objective of this effort was to experimentally verify a dynamic gas temperature measurement system in laboratory experiments. The dynamic gas temperature measurement system verification program is described. A brief description of the sensor geometry and construction is followed by a discussion of the probe heat transfer analysis and subsequent compensation method. The laboratory experiments are described and experimental results are discussed. Finally, directions for further investigation are given

    Dynamic gas temperature measurement system

    Get PDF
    A gas temperature measurement system with compensated frequency response of 1 KHz and capability to operate in the exhaust of a gas turbine combustor was developed. Environmental guidelines for this measurement are presented, followed by a preliminary design of the selected measurement method. Transient thermal conduction effects were identified as important; a preliminary finite-element conduction model quantified the errors expected by neglecting conduction. A compensation method was developed to account for effects of conduction and convection. This method was verified in analog electrical simulations, and used to compensate dynamic temperature data from a laboratory combustor and a gas turbine engine. Detailed data compensations are presented. Analysis of error sources in the method were done to derive confidence levels for the compensated data

    Dynamic gas temperature measurement system, volume 1

    Get PDF
    A gas temperature measurement system with compensated frequency response of 1 kHz and capability to operate in the exhaust of a gas turbine engine combustor was developed. A review of available technologies which could attain this objective was done. The most promising method was identified as a two wire thermocouple, with a compensation method based on the responses of the two different diameter thermocouples to the fluctuating gas temperature field. In a detailed design of the probe, transient conduction effects were identified as significant. A compensation scheme was derived to include the effects of gas convection and wire conduction. The two wire thermocouple concept was tested in a laboratory burner exhaust to temperatures of about 3000 F and in a gas turbine engine to combustor exhaust temperatures of about 2400 F. Uncompensated and compensated waveforms and compensation spectra are presented

    Further development of the dynamic gas temperature measurement system. Volume 1: Technical efforts

    Get PDF
    A compensated dynamic gas temperature thermocouple measurement method was experimentally verified. Dynamic gas temperature signals from a flow passing through a chopped-wheel signal generator and an atmospheric pressure laboratory burner were measured by the dynamic temperature sensor and other fast-response sensors. Compensated data from dynamic temperature sensor thermoelements were compared with fast-response sensors. Results from the two experiments are presented as time-dependent waveforms and spectral plots. Comparisons between compensated dynamic temperature sensor spectra and a commercially available optical fiber thermometer compensated spectra were made for the atmospheric burner experiment. Increases in precision of the measurement method require optimization of several factors, and directions for further work are identified

    Further development of the dynamic gas temperature measurement system

    Get PDF
    Two experiments for verifying the frequency response of a previously-developed dynamic gas temperature measurement system were performed. In both experiments, fine-wire resistance temperature sensors were used as standards. The compensated dynamic temperature sensor data will be compared with the standards to verify the compensation method. The experiments are described in detail

    Study of guidance techniques for aerial application of agricultural compounds

    Get PDF
    Candidate systems were identified for evaluation of suitability in meeting specified accuracy requirements for a swath guidance system in an agriculture aircraft. Further examination reduced the list of potential candidates to a single category, i.e., transponder type systems, for detailed evaluation. Within this category three systems were found which met the basic accuracy requirements of the work statement. The Flying Flagman, the Electronic Flagging and the Raydist Director System. In addition to evaluating the systems against the specified requirements, each system was compared with the other two systems on a relative basis. The conclusions supported by the analyses show the Flying Flagman system to be the most suitable system currently available to meet the requirements

    Automated Retrieval of Non-Engineering Domain Solutions to Engineering Problems

    Get PDF
    Organised by: Cranfield UniversityBiological inspiration for engineering design has occurred through a variety of techniques such as creation and use of databases, keyword searches of biological information in natural-language format, prior knowledge of biology, and chance observations of nature. This research focuses on utilizing the reconciled Functional Basis function and flow terms to identify suitable biological inspiration for function based design. The organized search provides two levels of results: (1) associated with verb function only and (2) narrowed results associated with verb-noun (function-flow). A set of heuristics has been complied to promote efficient searching using this technique. An example for creating smart flooring is also presented and discussed.Mori Seiki – The Machine Tool Compan

    School violence, school differences and school discourses

    Get PDF
    This article highlights one strand of a study which investigated the concept of the violenceresilient school. In six inner-city secondary schools, data on violent incidents in school and violent crime in the neighbourhood were gathered, and compared with school practices to minimise violence, accessed through interviews. Some degree of association between the patterns of behaviour and school practices was found: schools with a wider range of wellconnected practices seemed to have less difficult behaviour. Interviews also showed that the different schools had different organisational discourses for construing school violence, its possible causes and the possible solutions. Differences in practices are best understood in connection with differences in these discourses. Some of the features of school discourses are outlined, including their range, their core metaphor and their silences. We suggest that organisational discourse is an important concept in explaining school effects and school differences, and that improvement attempts could have clearer regard to this concept

    Exploration Medical System Demonstration Project

    Get PDF
    A near-Earth Asteroid (NEA) mission will present significant new challenges including hazards to crew health created by exploring a beyond low earth orbit destination, traversing the terrain of asteroid surfaces, and the effects of variable gravity environments. Limited communications with ground-based personnel for diagnosis and consultation of medical events require increased crew autonomy when diagnosing conditions, creating treatment plans, and executing procedures. Scope: The Exploration Medical System Demonstration (EMSD) project will be a test bed on the International Space Station (ISS) to show an end-to-end medical system assisting the Crew Medical Officers (CMO) in optimizing medical care delivery and medical data management during a mission. NEA medical care challenges include resource and resupply constraints limiting the extent to which medical conditions can be treated, inability to evacuate to Earth during many mission phases, and rendering of medical care by a non-clinician. The system demonstrates the integration of medical technologies and medical informatics tools for managing evidence and decision making. Project Objectives: The objectives of the EMSD project are to: a) Reduce and possibly eliminate the time required for a crewmember and ground personnel to manage medical data from one application to another. b) Demonstrate crewmember's ability to access medical data/information via a software solution to assist/aid in the treatment of a medical condition. c) Develop a common data management architecture that can be ubiquitously used to automate repetitive data collection, management, and communications tasks for all crew health and life sciences activities. d) Develop a common data management architecture that allows for scalability, extensibility, and interoperability of data sources and data users. e) Lower total cost of ownership for development and sustainment of peripheral hardware and software that use EMSD for data management f) Provide better crew health via the reduction in crew errors, crew time, and ground time
    corecore