67 research outputs found

    Looking on the bright side: biased attention and the human serotonin transporter gene

    Get PDF
    Humans differ in terms of biased attention for emotional stimuli and these biases can confer differential resilience and vulnerability to emotional disorders. Selective processing of positive emotional information, for example, is associated with enhanced sociability and well-being while a bias for negative material is associated with neuroticism and anxiety. A tendency to selectively avoid negative material might also be associated with mental health and well-being. The neurobiological mechanisms underlying these cognitive phenotypes are currently unknown. Here we show for the first time that allelic variation in the promotor region of the serotonin transporter gene (5-HTTLPR) is associated with differential biases for positive and negative affective pictures. Individuals homozygous for the long allele (LL) showed a marked bias to selectively process positive affective material alongside selective avoidance of negative affective material. This potentially protective pattern was absent among individuals carrying the short allele (S or SL). Thus, allelic variation on a common genetic polymorphism was associated with the tendency to selectively process positive or negative information. The current study is important in demonstrating a genotype-related alteration in a well-established processing bias, which is a known risk factor in determining both resilience and vulnerability to emotional disorders

    Immunostimulatory Motifs Enhance Antiviral siRNAs Targeting Highly Pathogenic Avian Influenza H5N1

    Get PDF
    Highly pathogenic avian influenza (HPAI) H5N1 virus is endemic in many regions around the world and remains a significant pandemic threat. To date H5N1 has claimed almost 300 human lives worldwide, with a mortality rate of 60% and has caused the death or culling of hundreds of millions of poultry since its initial outbreak in 1997. We have designed multi-functional RNA interference (RNAi)-based therapeutics targeting H5N1 that degrade viral mRNA via the RNAi pathway while at the same time augmenting the host antiviral response by inducing host type I interferon (IFN) production. Moreover, we have identified two factors critical for maximising the immunostimulatory properties of short interfering (si)RNAs in chicken cells (i) mode of synthesis and (ii) nucleoside sequence to augment the response to virus. The 5-bp nucleoside sequence 5β€²-UGUGU-3β€² is a key determinant in inducing high levels of expression of IFN -Ξ±, -Ξ², -Ξ» and interleukin 1- Ξ² in chicken cells. Positioning of this 5β€²-UGUGU-3β€² motif at the 5β€²- end of the sense strand of siRNAs, but not the 3β€²- end, resulted in a rapid and enhanced induction of type I IFN. An anti-H5N1 avian influenza siRNA directed against the PB1 gene (PB1-2257) tagged with 5β€²-UGUGU-3β€² induced type I IFN earlier and to a greater extent compared to a non-tagged PB1-2257. Tested against H5N1 in vitro, the tagged PB1-2257 was more effective than non-tagged PB1-2257. These data demonstrate the ability of an immunostimulatory motif to improve the performance of an RNAi-based antiviral, a finding that may influence the design of future RNAi-based anti-influenza therapeutics

    REUL Is a Novel E3 Ubiquitin Ligase and Stimulator of Retinoic-Acid-Inducible Gene-I

    Get PDF
    RIG-I and MDA5 are cytoplasmic sensors that recognize different species of viral RNAs, leads to activation of the transcription factors IRF3 and NF-ΞΊB, which collaborate to induce type I interferons. In this study, we identified REUL, a RING-finger protein, as a specific RIG-I-interacting protein. REUL was associated with RIG-I, but not MDA5, through its PRY and SPRY domains. Overexpression of REUL potently potentiated RIG-I-, but not MDA5-mediated downstream signalling and antiviral activity. In contrast, the RING domain deletion mutant of REUL suppressed Sendai virus (SV)-induced, but not cytoplasmic polyI:C-induced activation of IFN-Ξ² promoter. Knockdown of endogenous REUL by RNAi inhibited SV-triggered IFN-Ξ² expression, and also increased VSV replication. Full-length RIG-I, but not the CARD domain deletion mutant of RIG-I, underwent ubiquitination induced by REUL. The Lys 154, 164, and 172 residues of the RIG-I CARD domain were critical for efficient REUL-mediated ubiquitination, as well as the ability of RIG-I to induce activation of IFN-Ξ² promoter. These findings suggest that REUL is an E3 ubiquitin ligase of RIG-I and specifically stimulates RIG-I-mediated innate antiviral activity

    SARS-CoV Pathogenesis Is Regulated by a STAT1 Dependent but a Type I, II and III Interferon Receptor Independent Mechanism

    Get PDF
    Severe acute respiratory syndrome coronavirus (SARS-CoV) infection often caused severe end stage lung disease and organizing phase diffuse alveolar damage, especially in the elderly. The virus-host interactions that governed development of these acute end stage lung diseases and death are unknown. To address this question, we evaluated the role of innate immune signaling in protection from human (Urbani) and a recombinant mouse adapted SARS-CoV, designated rMA15. In contrast to most models of viral pathogenesis, infection of type I, type II or type III interferon knockout mice (129 background) with either Urbani or MA15 viruses resulted in clinical disease outcomes, including transient weight loss, denuding bronchiolitis and alveolar inflammation and recovery, identical to that seen in infection of wildtype mice. This suggests that type I, II and III interferon signaling play minor roles in regulating SARS pathogenesis in mouse models. In contrast, infection of STAT1βˆ’/βˆ’ mice resulted in severe disease, high virus titer, extensive pulmonary lesions and 100% mortality by day 9 and 30 post-infection with rMA15 or Urbani viruses, respectively. Non-lethal in BALB/c mice, Urbani SARS-CoV infection in STAT1βˆ’/βˆ’ mice caused disseminated infection involving the liver, spleen and other tissues after day 9. These findings demonstrated that SARS-CoV pathogenesis is regulated by a STAT1 dependent but type I, II and III interferon receptor independent, mechanism. In contrast to a well documented role in innate immunity, we propose that STAT1 also protects mice via its role as an antagonist of unrestrained cell proliferation

    Search for Specific Biomarkers of IFNΞ² Bioactivity in Patients with Multiple Sclerosis

    Get PDF
    Myxovirus A (MxA), a protein encoded by the MX1 gene with antiviral activity, has proven to be a sensitive measure of IFNΞ² bioactivity in multiple sclerosis (MS). However, the use of MxA as a biomarker of IFNΞ² bioactivity has been criticized for the lack of evidence of its role on disease pathogenesis and the clinical response to IFNΞ². Here, we aimed to identify specific biomarkers of IFNΞ² bioactivity in order to compare their gene expression induction by type I IFNs with the MxA, and to investigate their potential role in MS pathogenesis. Gene expression microarrays were performed in PBMC from MS patients who developed neutralizing antibodies (NAB) to IFNΞ² at 12 and/or 24 months of treatment and patients who remained NAB negative. Nine genes followed patterns in gene expression over time similar to the MX1, which was considered the gold standard gene, and were selected for further experiments: IFI6, IFI27, IFI44L, IFIT1, HERC5, LY6E, RSAD2, SIGLEC1, and USP18. In vitro experiments in PBMC from healthy controls revealed specific induction of selected biomarkers by IFNΞ² but not IFNΞ³, and several markers, in particular USP18 and HERC5, were shown to be significantly induced at lower IFNΞ² concentrations and more selective than the MX1 as biomarkers of IFNΞ² bioactivity. In addition, USP18 expression was deficient in MS patients compared with healthy controls (pβ€Š=β€Š0.0004). We propose specific biomarkers that may be considered in addition to the MxA to evaluate IFNΞ² bioactivity, and to further explore their implication in MS pathogenesis

    Global mRNA Degradation during Lytic Gammaherpesvirus Infection Contributes to Establishment of Viral Latency

    Get PDF
    During a lytic gammaherpesvirus infection, host gene expression is severely restricted by the global degradation and altered 3β€² end processing of mRNA. This host shutoff phenotype is orchestrated by the viral SOX protein, yet its functional significance to the viral lifecycle has not been elucidated, in part due to the multifunctional nature of SOX. Using an unbiased mutagenesis screen of the murine gammaherpesvirus 68 (MHV68) SOX homolog, we isolated a single amino acid point mutant that is selectively defective in host shutoff activity. Incorporation of this mutation into MHV68 yielded a virus with significantly reduced capacity for mRNA turnover. Unexpectedly, the MHV68 mutant showed little defect during the acute replication phase in the mouse lung. Instead, the virus exhibited attenuation at later stages of in vivo infections suggestive of defects in both trafficking and latency establishment. Specifically, mice intranasally infected with the host shutoff mutant accumulated to lower levels at 10 days post infection in the lymph nodes, failed to develop splenomegaly, and exhibited reduced viral DNA levels and a lower frequency of latently infected splenocytes. Decreased latency establishment was also observed upon infection via the intraperitoneal route. These results highlight for the first time the importance of global mRNA degradation during a gammaherpesvirus infection and link an exclusively lytic phenomenon with downstream latency establishment

    TRAF6 and IRF7 Control HIV Replication in Macrophages

    Get PDF
    The innate immune system recognizes virus infection and evokes antiviral responses which include producing type I interferons (IFNs). The induction of IFN provides a crucial mechanism of antiviral defense by upregulating interferon-stimulated genes (ISGs) that restrict viral replication. ISGs inhibit the replication of many viruses by acting at different steps of their viral cycle. Specifically, IFN treatment prior to in vitro human immunodeficiency virus (HIV) infection stops or significantly delays HIV-1 production indicating that potent inhibitory factors are generated. We report that HIV-1 infection of primary human macrophages decreases tumor necrosis factor receptor-associated factor 6 (TRAF6) and virus-induced signaling adaptor (VISA) expression, which are both components of the IFN signaling pathway controlling viral replication. Knocking down the expression of TRAF6 in macrophages increased HIV-1 replication and augmented the expression of IRF7 but not IRF3. Suppressing VISA had no impact on viral replication. Overexpression of IRF7 resulted in enhanced viral replication while knocking down IRF7 expression in macrophages significantly reduced viral output. These findings are the first demonstration that TRAF6 can regulate HIV-1 production and furthermore that expression of IRF7 promotes HIV-1 replication

    The Role of Response Elements Organization in Transcription Factor Selectivity: The IFN-Ξ² Enhanceosome Example

    Get PDF
    What is the mechanism through which transcription factors (TFs) assemble specifically along the enhancer DNA? The IFN-Ξ² enhanceosome provides a good model system: it is small; its components' crystal structures are available; and there are biochemical and cellular data. In the IFN-Ξ² enhanceosome, there are few protein-protein interactions even though consecutive DNA response elements (REs) overlap. Our molecular dynamics (MD) simulations on different motif combinations from the enhanceosome illustrate that cooperativity is achieved via unique organization of the REs: specific binding of one TF can enhance the binding of another TF to a neighboring RE and restrict others, through overlap of REs; the order of the REs can determine which complexes will form; and the alternation of consensus and non-consensus REs can regulate binding specificity by optimizing the interactions among partners. Our observations offer an explanation of how specificity and cooperativity can be attained despite the limited interactions between neighboring TFs on the enhancer DNA. To date, when addressing selective TF binding, attention has largely focused on RE sequences. Yet, the order of the REs on the DNA and the length of the spacers between them can be a key factor in specific combinatorial assembly of the TFs on the enhancer and thus in function. Our results emphasize cooperativity via RE binding sites organization
    • …
    corecore