64 research outputs found

    Mudança organizacional: uma abordagem preliminar

    Full text link

    Growth temperature of four Campylobacter jejuni strains influences their subsequent survival in food and water

    No full text
    Aim: To determine if Campylobacter jejuni grown at 37 and 42 degrees C have different abilities to survive on beef and chicken, and in water. Methods and Results: Beef, chicken and water were separately inoculated with four Camp. jejuni (two poultry and two beef) strains grown at 37 or 42 degrees C. The matrices were stored at similar to 4 degrees C and Camp. jejuni numbers were monitored over time by plate counts. On beef there was a greater decrease in number for two strains (P < 0.05; similar to 0.7 and 1.3 log CFU cm(-2)) grown at 37 degrees C as compared with 42 degrees C. By contrast on chicken there was a decrease in numbers for two strains (P < 0.05; similar to 1.3 and 1 log CFU g(-1)) grown at 42 degrees C as compared with 37 degrees C. In water there was a greater decrease in numbers for all strains (P < 0.05; similar to 3-5.3 log CFU ml(-1)) grown at 42 degrees C as compared with 37 degrees C. Conclusions: Growth temperature influences the survival of Camp. jejuni on food and in water. Significance and Impact of this study: Campylobacter jejuni survival studies need to consider growth temperature to avoid erroneous results. Campylobacter jejuni grown at 37 degrees C, the body temperature of humans and cattle, may represent a greater public health risk in water than those grown at 42 degrees C, the body temperature of poultry

    Pituitary luteinizing hormone responses to single doses of exogenous GnRH in female social Cape ground squirrels exhibiting low reproductive skew

    No full text
    The Cape ground squirrel Xerus inauris is unusual among social mammals as it exhibits a low reproductive skew, being a facultative plural breeder with not all females breeding within a group. We investigated pituitary function to assess whether there was reproductive inhibition at the level of the pituitary and potentially the hypothalamus in breeding and non-breeding female Cape ground squirrels. We did so during the summer and winter periods by measuring luteinizing hormone (LH) responses to single doses of 2 g exogenous gonadotropin-releasing hormone (GnRH) and physiological saline administered to 42 females from 11 colonies. Basal LH concentrations of females increased in response to the GnRH challenge. Basal plasma LH concentrations were greater during winter, when most oestrus events are observed. However, we found no differences in plasma LH concentrations between breeding and non-breeding females. We showed that the anterior pituitary of non-breeding female ground squirrels is no less sensitive to exogenously administered GnRH than that of breeding females. We therefore concluded that the pituitary is no more active in breeding than non-breeding females. The lack of differentiation in response to GnRH suggests that either non-breeding females have ovaries that are less sensitive to LH or that they refrain from sexual activity with males through an alternative mechanism of self-restraint.Our work was supported financially by National Science Foundation Grant No. IBN-0130600, awarded to J.M.W., through the University of Central Florida. The National Research Foundation (GUN 2069070) provided additional financial support to NCB

    The coordination of heart and gill rhythms in \u3cem\u3eLimulus\u3c/em\u3e

    No full text
    WhenLimulus is exposed to hypoxia both heart rate and ventilation rate decrease together (Fig. 1, Fig. 2A). Hypoxia ultimately leads to cessation of ventilation and concomitant bradycardia. When oxygen is reintroduced into an oxygen free aquarium ventilation resumes rapidly, with a parallel increase in heart rate (Fig. 1, Fig. 2B). Covariation of heart and gill activity similar to that in hypoxia experiments also occurs during the normal respiratory behavior patterns ofLimulus, such as intermittent ventilation, swimming, hyperventilation and gill cleaning. The covariation of heart and ventilation rates is especially evident during transitions of intermittent ventilation (alternating periods of apnea and ventilation, Fig. 3). Covariation is also evident during the large increases in ventilation frequency which occur during hyperventilation and swimming (Fig. 4). Gill cleaning is a centrally determined motor sequence which consists of rhythmic flicking of the inner lobes of a gill plate between the book gill lamellae of the plate on the opposite side. During this behavior there is a marked slowing of the heart rate which is at least as great as the decrease in rate seen during periods of apnea (Figs. 5 and 6). Changes in heart rate associated with ventilatory activity do not appear to be caused by the metabolic demand resulting from such activity (Fig. 7). In addition to frequency covariation of the heart and ventilation rates, there can also be phase coordination of the two rhythms. When the two are close to the same frequency or to harmonic frequencies, the heart often maintains a phase preference with respect to the concurrent gill interval over a considerable period of time (Fig. 8). These results suggest that there are common tonic inputs to both the cardiac ganglion and the central pattern generators for the various ventilatory behaviors, which modulate the frequencies of both simultaneously. Both the frequency covariation and phase communication between the two systems may serve to increase the efficiency of the respiratory-circulatory interactions

    Dissecting Elastic Heterogeneity along DNA Molecules Coated Partly with Rad51 Using Concurrent Fluorescence Microscopy and Optical Tweezers

    Get PDF
    Nucleoprotein filament formation by recombinases is central to homologous recombination. To follow this process, we used fluorescent human Rad51 recombinase to visualize the interactions with double-stranded DNA (dsDNA). Fluorescence imaging revealed that Rad51 filament formation on dsDNA initiates from multiple nucleation points, resulting in Rad51-dsDNA nucleoprotein filaments interspersed with regions of bare DNA. The elastic properties of such heterogeneously coated DNA molecules were assessed by combining force-extension measurements using optical traps with fluorescence microscopy. This combination of single-molecule techniques allows discrimination of segments within an individual DNA molecule and determination of their elastic properties. The nonfluorescent zones of DNA-Rad51 constructs showed the well-known (over)stretching behavior of bare DNA. In contrast, the fluorescent, Rad51-coated zones did not overstretch and Rad51 remained stably bound in a structure that was ∼50% longer than bare DNA. These results illustrate the power of adding sensitive fluorescence imaging to optical tweezers instrumentation
    corecore