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ABSTRACT Nucleoprotein filament formation by recombinases is central to homologous recombination. To follow this process,
we used fluorescent human Rad51 recombinase to visualize the interactions with double-stranded DNA (dsDNA). Fluorescence
imaging revealed that Rad51 filament formation on dsDNA initiates from multiple nucleation points, resulting in Rad51-dsDNA
nucleoprotein filaments interspersed with regions of bare DNA. The elastic properties of such heterogeneously coated DNA
molecules were assessed by combining force-extension measurements using optical traps with fluorescence microscopy. This
combination of single-molecule techniques allows discrimination of segments within an individual DNA molecule and deter-
mination of their elastic properties. The nonfluorescent zones of DNA-Rad51 constructs showed the well-known (over)stretching
behavior of bare DNA. In contrast, the fluorescent, Rad51-coated zones did not overstretch and Rad51 remained stably bound in a
structure that was ;50% longer than bare DNA. These results illustrate the power of adding sensitive fluorescence imaging to
optical tweezers instrumentation.
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Optical tweezers have proved to be versatile tools to mech-

anically probe DNA and the interactions with DNA-binding

proteins (1–5). Combining this technique with fluorescence

microscopy is a powerful means to simultaneously observe

proteins bound to the DNA and detect induced mechanical

perturbations. However, only a few such applications have

been reported (6–8). Here, we image fluorescence during force-

extension measurements on double-stranded DNA (dsDNA)

coated with fluorescently labeled recombinase proteins. This

approach allows detailed analysis of elasticity of different

segments on the same DNA molecule, either coated with

fluorescently labeled protein or uncoated, rather than an aver-

age analysis over the whole molecule. Therefore, we can di-

rectly identify different elements of a complex structure and

coherently dissect their separate elastic behavior, without

assuming uniform molecular characteristics.

Using this combined approach, we have studied the mech-

anical aspects of human recombinase protein Rad51 binding

to dsDNA. Rad51 forms the catalytic core of eukaryotic ho-

mologous recombination, an essential mechanism for main-

taining genome integrity (9–11). Homologous recombination

serves both as a crossover mechanism for chromatids during

meiosis and as a reliable repair pathway for dsDNA breaks or

stalled replication forks (12). Recombinase proteins drive

DNA strand exchanges between homologous DNA mole-

cules. Rad51 is structurally and functionally similar to the

prokaryotic RecA and archaeal RadA recombinases (9–11).

Like other recombinases, Rad51 forms nucleoprotein fila-

ments on both single-stranded (ssDNA) and dsDNA (9).

To study Rad51 nucleoprotein formation on DNA using

the combined trapping/fluorescence approach, we have gen-

erated functional single-cysteine variants of human Rad51

recombinase and labeled them with Alexa Fluor 555 (Molec-

ular Probes, Eugene, OR); a detailed description of the

variants and their biochemical functionality tests will appear

elsewhere. Filaments assembled at multiple sites on dsDNA.

Therefore, the dsDNA molecules become discontinuously

coated with Rad51, reflected both in intermittent fluores-

cence emission along the DNA and heterogeneous elasticity

(see below).

EXPERIMENTAL ASSAY

For a quantitative analysis of the mechanical properties of

Rad51 nucleoprotein filaments, we used a double optical trap

setup to manipulate individual Rad51-dsDNA complexes.

To demonstrate the ability to extract features of an inhomo-

geneously coated single DNA molecule, filaments were

assembled with Alexa Fluor 555-labeled Rad51 onto 48-kbp

biotinylated l-phage dsDNA (5). Assembly occurred in the

presence of 1 mM ATP, 30 mM KCl, and with 2 mM CaCl2
(instead of MgCl2) to strongly reduce disassembly of the

nucleoprotein filaments (13,14). By tuning the Rad51/bp

stoichiometry during assembly, conditions were obtained

resulting in incomplete coverage of the DNA molecules.
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Single filaments were tethered from both ends to two

streptavidin-coated beads, optically trapped in a custom-built

flow cell (5) using a 3 W 1064 nm laser. By moving one of

the traps, tension can be applied on the filament in a con-

trolled manner. Combining back-focal-plane interferometry

(15) with wide-field epifluorescence imaging (532 nm laser

excitation) onto a charge-coupled device camera (Cascade

512B, Princeton Instruments, Monmouth Junction, NJ), both

the force on the fixed bead and fluorescence images of the

whole construct were recorded at 5 Hz (Movie 1, Supple-

mentary Material). Moreover, the distance between the beads

over time was tracked using transmitted bright-field video

microscopy. Together, this allows determination of the elas-

tic properties of distinct segments in a DNA molecule.

NONUNIFORM ELASTICITY

To dissect the force-extension data of the heterogeneous con-

struct, kymographs (16) were constructed from the fluores-

cence images. The kymograph in Fig. 1 A shows that Rad51

remains stably bound even at forces that overstretch dsDNA.

Moreover, it is locally anchored to the DNA: the relative

position of the fluorescent zones did not change in several

stretching cycles on the same construct. Although it is still

possible that the dsDNA held within the filament is dynam-

ically melted, one or both strands must be tightly bound to

Rad51. This behavior of Rad51, polymerized into ATP-

coordinated nucleoprotein filaments, is thus very different

from the one-dimensional sliding along dsDNA of Rad51

oligomers reported by Granéli et al. (17), a property that is

ATP independent and presumably unrelated to nucleoprotein

filament formation.

The force-extension curve of the entire construct in Fig. 1

(panel B) and comparison to the curve of bare DNA (shown

in gray) immediately show the qualitative effect of Rad51

binding. First, the steep tension increase commences at larger

extension than for bare dsDNA, indicative of a longer con-

tour length. Second, the length increase during the over-

stretching transition (induced at tensions exceeding 65 pN)

is less than the factor 1.7 increase for bare dsDNA (2), sug-

gesting reduced overstretching for Rad51-coated dsDNA.

The kymograph was subjected to edge detection with sub-

pixel resolution to discriminate fluorescent from dark zones

and monitor them in time during extension. Force-extension

curves were then generated for specific parts of the construct

(Fig. 1, C–E). The force-extension behavior of a nonfluores-

cent zone (bare zone (i), Fig. 1 C) was, as expected from the

apparent absence of Rad51 on this part of the dsDNA, indis-

cernible from that of published curves of dsDNA (2). It

showed a steep increase of force when stretched up to a

contour length of 2.8 mm. At forces exceeding 65 pN, a clear

FIGURE 1 Elastic properties of a single 48 kbp l-dsDNAmolecule partly coated with fluorescent Rad51. (A) Fluorescence image (left)

of such an assembly, tethered between two streptavidin-coated polystyrene beads. Kymograph (right) generated from the successive

frames of the movie recorded during extension of the construct (Movie 1, Supplementary Material). Fluorescence decay is due to

photobleaching and not Rad51 dissociation, as tested by varying the laser power. The corresponding force time trace is depicted in

gray scales (top bar;white corresponds to 90 pN). (B) Force-extension curve corresponding to the construct inA. The gray trace shows

a bare l-DNA reference curve. (C–E) Force-extension curves of the bare zone (i), the continuous fluorescent zone (ii) and the composite

fluorescent zone (iii) as indicated on the right of the kymograph.
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overstretching plateau was reached that ended at a length of

4.8 mm, i.e., ;170% of the contour length of this part of the

dsDNA. In sharp contrast, the force-extension behavior of

a continuously fluorescent zone, indicative of Rad51-coated

DNA (continuous zone (ii), Fig. 1 D), showed that this zone

did not overstretch under high tension (up to 90 pN). This has

also been observed for RecA (3,18,19). The force-extension

behavior of a composite zone ((iii), Fig. 1 E), apparently

including zones with and without bound Rad51, was more

complex. An overstretching plateau was observed, but the

dsDNA could only be stretched to 140% of its contour length.

This composite behavior observed in the force-extension

curve can be accounted for by a linear combination of coated,

rigid parts (cf. Fig. 1 D), and bare, elastic parts (cf. Fig. 1 C).

With this assumption, the fraction of the dsDNA coated by

Rad51 (f) and the Rad51-induced elongation factor of the

coated parts (e) were estimated from the force-extension curve

of the full construct (Fig. 1 B) as follows. The measured

contour length of the partially coated and extended filament

(18.4 mm, fit to worm-like chain (2), see Fig. 1 B) was

expressed as the sum of an uncoated part of length L0(1 – f)
and a coated (and extended) fraction of length L0 f e, L0 being

the 16.4-mm contour length of relaxed uncoated l-DNA.

Similarly, assuming that only uncoated segments stretch

under tension and knowing that bare dsDNA can be over-

stretched to 170% of its relaxed contour length (2), the over-

stretched length of the partially coated filament (27.0 mm,

from inspection of Fig. 1 B) was expressed as the sum of

1.7�L0(1 – f) andL0 f e. From this set of equations, the values of

f and ewere solved, yielding a coated fraction f of 25% (for the

DNA molecule in Fig. 1) and a Rad51-induced extension e of

148%. This latter value was reproduced within 4% (standard

deviation) with other Rad51-dsDNA assemblies and is

comparable to those determined from electron microscopy

and scanning force microscopy images (9,14).

In this letter, we have shown that Rad51 nucleates at mul-

tiple sites along dsDNA, hence forming discrete segments.

Moreover, the elasticity analysis showed that the DNA

within the filament is stably bound to and held rigidly by

Rad51. This information could only be obtained by com-

bining fluorescence imaging with single-molecule manipu-

lation with optical tweezers, hence avoiding the averaging

over heterogeneous segments.

SUPPLEMENTARY MATERIAL

An online supplement to this article can be found by visiting

BJ Online at http://www.biophysj.org.

ACKNOWLEDGMENTS

The authors thank Bram van den Broek for a critical reading of the

manuscript.

This work was supported by the Biomolecular Physics program of the

Dutch organization for Fundamental Research of Matter (E.J.G.P. and

G.J.L.W.), and grants from the Dutch Cancer Society, the Netherlands

Organization for Scientific Research, the Association for International

Cancer Research, and the European Commission (C.W. and R.K.). E.J.G.P.

and G.J.L.W. are recipients of Vidi grants from the Netherlands Organi-

zation for Scientific Research.

REFERENCES and FOOTNOTES

1. Bustamante, C., J. C. Macosko, and G. J. Wuite. 2000. Grabbing the cat
by the tail: manipulating molecules one by one. Nat. Rev. Mol. Cell Biol.
1:130–136.

2. Smith, S. B., Y. Cui, and C. Bustamante. 1996. Overstretching B-DNA:
the elastic response of individual double-stranded and single-stranded
DNA molecules. Science. 271:795–799.

3. Bennink, M. L., O. D. Scharer, R. Kanaar, K. Sakata-Sogawa, J. M.
Schins, J. S. Kanger, B. G. de Grooth, and J. Greve. 1999. Single-
molecule manipulation of double-stranded DNA using optical tweezers:
interaction studies of DNA with RecA and YOYO-1. Cytometry. 36:
200–208.

4. Wuite, G. J., S. B. Smith, M. Young, D. Keller, and C. Bustamante.
2000. Single-molecule studies of the effect of template tension on T7
DNA polymerase activity. Nature. 404:103–106.

5. van den Broek, B., M. C. Noom, and G. J. Wuite. 2005. DNA-tension
dependence of restriction enzyme activity reveals mechanochemical
properties of the reaction pathway. Nucleic Acids Res. 33:2676–2684.

6. Harada, Y., T. Funatsu, K. Murakami, Y. Nonoyama, A. Ishihama, and
T. Yanagida. 1999. Single-molecule imaging of RNA polymerase-DNA
interactions in real time. Biophys. J. 76:709–715.

7. Lang, M. J., P. M. Fordyce, and S. M. Block. 2003. Combined optical
trapping and single-molecule fluorescence. J. Biol. 2:6.

8. Brau, R. R., P. B. Tarsa, J. M. Ferrer, P. Lee, and M. J. Lang. 2006.
Interlaced optical force-fluorescence measurements for single molecule
biophysics. Biophys. J. 91:1069–1077.

9. Benson, F. E., A. Stasiak, and S. C. West. 1994. Purification and char-
acterization of the human Rad51 protein, an analogue of E. coli RecA.
EMBO J. 13:5764–5771.

10. West, S. C. 2003. Molecular views of recombination proteins and their
control. Nat. Rev. Mol. Cell Biol. 4:435–445.

11. Wyman, C., and R. Kanaar. 2004. Homologous recombination: down
to the wire. Curr. Biol. 14:R629–R631.

12. Michel, B., M. J. Flores, E. Viguera, G. Grompone, M. Seigneur, and
V. Bidnenko. 2001. Rescue of arrested replication forks by homologous
recombination. Proc. Natl. Acad. Sci. USA. 98:8181–8188.

13. Bugreev, D. V., and A. V. Mazin. 2004. Ca21 activates human homol-
ogous recombination protein Rad51 by modulating its ATPase activity.
Proc. Natl. Acad. Sci. USA. 101:9988–9993.

14. Ristic, D., M. Modesti, T. van der Heijden, J. van Noort, C. Dekker,
R. Kanaar, and C. Wyman. 2005. Human Rad51 filaments on double-
and single-stranded DNA: correlating regular and irregular forms with
recombination function. Nucleic Acids Res. 33:3292–3302.

15. Gittes, F., and C. F. Schmidt. 1998. Interference model for back-focal-
plane displacement detection in optical tweezers. Opt. Lett. 23:7–9.

16. Waterman-Storer, C. M., A. Desai, J. C. Bulinski, and E. D. Salmon.
1998. Fluorescent speckle microscopy, a method to visualize the dy-
namics of protein assemblies in living cells. Curr. Biol. 8:1227–1230.
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