46 research outputs found

    WTC2005-63168 APPLICATION OF ACOUSTIC EMISSION FOR HIGH-PRESSURE SHORT TIME SOLIDIFICATION OF TRACTION FLUIDS

    Get PDF
    ABSTRACT The lubricating oils solidify at quasi-static high-pressure as the amorphous or glassy solids are verified by a number of studies. However, solidification of lubricating oil under the dynamic condition as the rolling bearings and the traction CVT is not clear. The high-pressure short time solidification of traction fluids is examined by the analysis of dent after the impact tests and AE analysis under impact loads. The intensity of each impact collision is measured by means of an acoustic emission (AE) sensor. The dimensionless AE r.m.s value is investigated by based on phase diagram of testing oils. It was recognized the solidification of oil under the dynamic high-pressure condition almost corresponded to the static condition

    Magnetocaloric Effects in Metamagnetic Shape Memory Alloys

    Get PDF
    Recently, metamagnetic shape memory alloys have attracted much attention as candidates for the rare-earth free magnetic refrigerants. These materials undergo the martensitic transformation (MT) at around room temperature accompanied by a significant entropy change. The application of the magnetic field at the low-temperature martensitic phase realizes the magnetic field-induced martensitic transformation (MFIMT). Through the MFIMT, the materials show an unconventional magnetocaloric effect (MCE), which is called inverse magnetocaloric effect (IMCE). In this chapter, the direct measurement system of MCE in pulsed-high-magnetic fields is introduced. With taking the advantage of the fast field-sweep rate of pulsed field, adiabatic measurements of MCE are carried out at various temperatures. Using this technique, the IMCEs of the metamagnetic shape memory alloys NiCoMnIn and NiCoMnGa are directly measured as adiabatic temperature changes in pulsed fields. From the experimental data of MCE for NiCoMnIn, the entropy of spin system in the austenite phase is estimated through a simple mean-field model. By the combination of MCE, magnetization and specific heat measurements, the electronic, lattice and magnetic contributions to the IMCE are individually evaluated. The result for NiCoMnIn demonstrates that lattice entropy plays the dominant role for IMCE in this material

    Mobile monitoring along a street canyon and stationary forest air monitoring of formaldehyde by means of a micro gas analysis system

    Get PDF
    A micro-gas analysis system (μGAS) was developed for mobile monitoring and continuous measurements of atmospheric HCHO. HCHO gas was trapped into an absorbing/reaction solution continuously using a microchannel scrubber in which the microchannels were patterned in a honeycomb structure to form a wide absorbing area with a thin absorbing solution layer. Fluorescence was monitored after reaction of the collected HCHO with 2,4-pentanedione (PD) in the presence of acetic acid/ammonium acetate. The system was portable, battery-driven, highly sensitive (limit of detection = 0.01 ppbv) and had good time resolution (response time 50 s). The results revealed that the PD chemistry was subject to interference from O3. The mechanism of this interference was investigated and the problem was addressed by incorporating a wet denuder. Mobile monitoring was performed along traffic roads, and elevated HCHO levels in a street canyon were evident upon mapping of the obtained data. The system was also applied to stationary monitoring in a forest in which HCHO formed naturally via reaction of biogenic compounds with oxidants. Concentrations of a few ppbv-HCHO and several-tens of ppbv of O3 were then simultaneously monitored with the μGAS in forest air monitoring campaigns. The obtained 1 h average data were compared with those obtained by 1 h impinger collection and offsite GC-MS analysis after derivatization with o-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine (PFBOA). From the obtained data in the forest, daily variations of chemical HCHO production and loss are discussed

    Photoinduced dynamics during electronic transfer from narrow to wide bandgap layers in one-dimensional heterostructured materials

    Get PDF
    Electron transfer is a fundamental energy conversion process widely present in synthetic, industrial, and natural systems. Understanding the electron transfer process is important to exploit the uniqueness of the low-dimensional van der Waals (vdW) heterostructures because interlayer electron transfer produces the function of this class of material. Here, we show the occurrence of an electron transfer process in one-dimensional layer-stacking of carbon nanotubes (CNTs) and boron nitride nanotubes (BNNTs). This observation makes use of femtosecond broadband optical spectroscopy, ultrafast time-resolved electron diffraction, and first-principles theoretical calculations. These results reveal that near-ultraviolet photoexcitation induces an electron transfer from the conduction bands of CNT to BNNT layers via electronic decay channels. This physical process subsequently generates radial phonons in the one-dimensional vdW heterostructure material. The gathered insights unveil the fundamentals physics of interfacial interactions in low dimensional vdW heterostructures and their photoinduced dynamics, pushing their limits for photoactive multifunctional applications

    Change of Positive Selection Pressure on HIV-1 Envelope Gene Inferred by Early and Recent Samples

    Get PDF
    HIV-1 infection has been on the rise in Japan recently, and the main transmission route has changed from blood transmission in the 1980s to homo- and/or hetero-sexual transmission in the 2000s. The lack of early viral samples with clinical information made it difficult to investigate the possible virological changes over time. In this study, we sequenced 142 full-length env genes collected from 16 Japanese subjects infected with HIV-1 in the 1980s and in the 2000s. We examined the diversity change in sequences and potential adaptive evolution of the virus to the host population. We used a codon-based likelihood method under the branch-site and clade models to detect positive selection operating on the virus. The clade model was extended to account for different positive selection pressures in different viral populations. The result showed that the selection pressure was weaker in the 2000s than in the 1980s, indicating that it might have become easier for the HIV to infect a new host and to develop into AIDS now than 20 years ago and that the HIV may be becoming more virulent in the Japanese population. The study provides useful information on the surveillance of HIV infection and highlights the utility of the extended clade models in analysis of virus populations which may be under different selection pressures

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Physical activity and exercise levels, and their relationship with selected health factors in college students

    No full text

    Thermodynamics and Kinetics of Martensitic Transformation in Ni-Mn-based Magnetic Shape Memory Alloys

    No full text
    We herein present a review of recent thermodynamic and kinetic studies on Ni-Mn-based magnetic shape memory alloys along with some new data supporting the kinetic discussion. Magnetic phase diagrams and Clausius-Clapeyron relationships are mainly discussed for Ni-Mn-Ga and Ni-Mn-In systems. For the kinetics, a phenomenological model based on Seeger’s model is used to describe the temperature dependence of magnetic field hysteresis, as well as the change of hysteresis under different sweeping rates of magnetic fields

    Development of Total Environment for Text Data Mining

    No full text
    corecore