9 research outputs found

    Vowel Sound Synthesis from Electroencephalography during Listening and Recalling

    No full text
    Recent advances in brain imaging technology have furthered our knowledge of the neural basis of auditory and speech processing, often via contributions from invasive brain signal recording and stimulation studies conducted intraoperatively. Herein, an approach for synthesizing vowel sounds straightforwardly from scalp‐recorded electroencephalography (EEG), a noninvasive neurophysiological recording method is demonstrated. Given cortical current signals derived from the EEG acquired while human participants listen to and recall (i.e., imagined) two vowels, /a/ and /i/, sound parameters are estimated by a convolutional neural network (CNN). The speech synthesized from the estimated parameters is sufficiently natural to achieve recognition rates >85% during a subsequent sound discrimination task. Notably, the CNN identifies the involvement of the brain areas mediating the "what" auditory stream, namely the superior, middle temporal, and Heschl's gyri, demonstrating the efficacy of the computational method in extracting auditory‐related information from neuroelectrical activity. Differences in cortical sound representation between listening versus recalling are further revealed, such that the fusiform, calcarine, and anterior cingulate gyri contributes during listening, whereas the inferior occipital gyrus is engaged during recollection. The proposed approach can expand the scope of EEG in decoding auditory perception that requires high spatial and temporal resolution

    Analysis of Molecular Alterations in Left- and Right-Sided Colorectal Carcinomas Reveals Distinct Pathways of Carcinogenesis : Proposal for New Molecular Profile of Colorectal Carcinomas

    No full text
    To clarify distinct genetic profiles of colorectal cancers based on tumor location (left- and right-sided), we evaluated the status of loss of heterozygosity (LOH), CpG islands methylation phenotype (CIMP), microsatellite instability (MSI), and mutations of p53, Ki-ras, and APC genes in 119 colorectal cancers. Statuses of LOH (at 5q, 8p, 17p, 18q, and 22q), MSI, and CIMP (MINT1, MINT2, MINT31, MLH-1, MGMT, p14, p16, and RASSF1A) were determined using microsatellite polymerase chain reaction and methylation-specific polymerase chain reaction coupled with a crypt isolation method, respectively. In addition, mutations of p53, Ki-ras, and APC genes were also examined. LOH, MSI, and CIMP status allowed us to classify samples into two groups: low or negative and high or positive. Whereas the frequency of p53 mutations in the LOH-high status was significantly higher in left-sided cancers than in right-sided cancers, CIMP-high in the LOH-high status and MSI-positive status were more frequently found in right-sided cancers compared with left-sided cancers. Finally, location-specific methylated loci were seen in colorectal cancers: type I (dominant in right-sided cancer) and type II (common in both segments of cancer). Our data confirm that distinct molecular pathways to colorectal cancer dominate in the left and right sides of the bowel
    corecore