28 research outputs found

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    Get PDF

    Invasion of Chicken Anemia Virus in Specific-Pathogen-Free Chicken Flocks and Its Successful Elimination from the Colony

    No full text
    A specific-pathogen-free (SPF) chicken colony was maintained with successive groups a month apart in age. The absence of specific pathogens, including chicken anemia virus (CAV), was confirmed through periodic serological tests for each group. However, some groups became CAV seropositive. The procedures of removing seropositive and the adjacent seronegative chickens followed with chemically disinfecting the housing did not halt CAV outbreaks. The full genome sequence of the CAV strain that appeared was closely related to low-virulence isolates in China. The outbreaks of CAV decreased with an increase in the seropositive chicken population, indicating that the progeny is protected from CAV infection by maternal anti-CAV antibodies. The persistence of CAV in erythroid and lymphoid tissues or reproductive tissues from CAV seropositive chickens was examined in chickens of various ages using polymerase chain reaction (PCR). Since a low persistence of CAV was observed in the colony, we isolated eggs from CAV seropositive hens through artificial insemination using semen collected from roosters and confirmed as CAV-free by PCR. Fertilized eggs were transferred to a new SPF facility and used for generating CAV-free progeny. To date, chickens reared in the new facility have been CAV-free for longer than two years. Redirection of eggs from seropositive hens was an effective means of eliminating CAV from chickens

    Table_1_Smoking cessation in the elderly as a sign of susceptibility to symptomatic COVID-19 reinfection in the United States.DOCX

    No full text
    BackgroundWe aimed to clarify the relationship between coronavirus disease 2019 (COVID-19) reinfection and basic disease and smoking status.MethodsThe electronic health records of 165,320 patients with COVID-19 from January 1, 2020, to August 27, 2021, were analyzed. Data on age, race, sex, smoking status (never, current, former), and basic disease were analyzed using Cox proportional hazard models.ResultsIn total, 6,133 patients (3.7%) were reinfected. The overall reinfection rate for never, current, and former smokers was 4.2, 3.5, and 5.7%, respectively. Although the risk of reinfection was highest among former smokers aged ≥65 years (7.7% [422/5,460]), the reinfection rate among current smokers aged ≥65 years was 6.2% (341/5,543). Among reinfected patients, the number of basic diseases was higher in former smokers (2.41 ± 1.16) than in current (2.28 ± 1.07, P = 0.07) and never smokers (2.07 ± 1.05, P < 0.001). Former smokers who are older may have been exposed to factors that increase their risk of symptomatic COVID-19 reinfection.</p

    Omicron BA.1 neutralizing antibody response following Delta breakthrough infection compared with booster vaccination of BNT162b2

    No full text
    Abstract Background Longitudinal data are lacking to compare booster effects of Delta breakthrough infection versus third vaccine dose on neutralizing antibodies (NAb) against Omicron. Methods Participants were the staff of a national research and medical institution in Tokyo who attended serological surveys on June 2021 (baseline) and December 2021 (follow-up); in between, the Delta-dominant epidemic occurred. Of 844 participants who were infection-naïve and had received two doses of BNT162b2 at baseline, we identified 11 breakthrough infections during follow-up. One control matched to each case was selected from boosted and unboosted individuals. We compared live-virus NAb against Wild-type, Delta, and Omicron BA.1 across groups. Results Breakthrough infection cases showed marked increases in NAb titers against Wild-type (4.1-fold) and Delta (5.5-fold), and 64% had detectable NAb against Omicron BA.1 at follow-up, although the NAb against Omicron after breakthrough infection was 6.7- and 5.2-fold lower than Wild-type and Delta, respectively. The increase was apparent only in symptomatic cases and as high as in the third vaccine recipients. Conclusions Symptomatic Delta breakthrough infection increased NAb against Wild-type, Delta, and Omicron BA.1, similar to the third vaccine. Given the much lower NAb against Omicron BA.1, infection prevention measures must be continued irrespective of vaccine and infection history while the immune evasive variants are circulating
    corecore