86 research outputs found

    Phase Separation of Multi-Component Bose-Einstein Condensates of Trapped Atoms and Molecules with a Homonuclear Feshbach Resonance

    Full text link
    We investigate phase separation of Bose-Einstein condensates (BECs) of two-component atoms and one-component molecules with a homonuclear Feshbach resonance. We develop a full model for dilute atomic and molecular gases including correlation of the Feshbach resonance and all kinds of interparticle interactions, and numerically calculate order parameters of the BECs in spherical harmonic oscillator traps at zero temperature with the Bogoliubov's classical field approximation. As a result, we find out that the Feshbach resonance can induce two types of phase separation. The actual phase structures and density profiles of the trapped gases are predicted in the whole parameter region, from the atom dominant regime to the molecule dominant regime. We focus on the role of the molecules in the phase separation. Especially in the atom dominant regime, the role of the molecules is described through effective interactions derived from our model. Furthermore we show that a perturbative and semi-classical limit of our model reproduces the conventional atomic BEC (single-channel) model.Comment: 11pages, 4 figure

    Multilayer graphene shows intrinsic resistance peaks in the carrier density dependence

    Get PDF
    Since the advent of graphene, a variety of studies have been performed to elucidate its fundamental physics, or to explore its practical applications. Gate-tunable resistance is one of the most important properties of graphene and has been studied in 1-3 layer graphene in a number of efforts to control the band gap to obtain a large on-off ratio. On the other hand, the transport property of multilayer graphene with more than three layers is less well understood. Here we show a new aspect of multilayer graphene. We found that four-layer graphene shows intrinsic peak structures in the gate voltage dependence of its resistance at zero magnetic field. Measurement of quantum oscillations in magnetic field confirmed that the peaks originate from the specific band structure of graphene and appear at the carrier density for the bottoms of conduction bands and valence bands. The intrinsic peak structures should generally be observed in AB-stacked multilayer graphene. The present results would be significant for understanding the physics of graphene and making graphene FET devices

    デンキ コウガク デバイス エノ オウヨウ オ メザシタ ボトム アップ ニヨル ナノ スケール ザイリョウ ノ チョウセイ

    Get PDF
    Rod-coil amphiphilic diblock copolymers consisting of oligo(2,5-di-n-octyloxy-1,4-phenylenevinylene) (OPV) as a rod and a hydrophobic block, and poly(ethylene oxide) (PEO) as a coil and a hydrophilic block were synthesized by a convergent method. The aggregation behavior of the block copolymers in a selective solvent (THF / H2O) was probed by utilizing the absorption and the emission of the OPV block. With increasing H2O content, the absorption maximum was blue-shifted, the emission from the molecularly dissolved OPV decreased, and that from the aggregated OPV increased. The transmission electron microscopy observation revealed that the block copolymers with the PEO weight fractions of 41 and 62 wt% formed cylindrical aggregate with a diameter of 6-8 nm and a length of several hundreds nanometer, while, the block copolymer with 79 wt% of PEO fraction formed distorted spherical aggregates with an average diameter of 13 nm

    Differential responses of normal human coronary artery endothelial cells against multiple cytokines comparatively assessed by gene expression profiles

    Get PDF
    AbstractEndothelial cells play an important role in terms of biological functions by responding to a variety of stimuli in the blood. However, little is known about the molecular mechanism involved in rendering the variety in the cellular response. To investigate the variety of the cellular responses against exogenous stimuli at the gene expression level, we attempted to describe the cellular responses with comprehensive gene expression profiles, dissect them into multiple response patterns, and characterize the response patterns according to the information accumulated so far on the genes included in the patterns. We comparatively analyzed in parallel the gene expression profiles obtained with DNA microarrays from normal human coronary artery endothelial cells (HCAECs) stimulated with multiple cytokines, interleukin-1β, tumor necrosis factor-α, interferon-β, interferon-γ, and oncostatin M, which are profoundly involved in various functional responses of endothelial cells. These analyses revealed that the cellular responses of HCAECs against these cytokines included at least 15 response patterns specific to a single cytokine or common to multiple cytokines. Moreover, we statistically extracted genes contained within the individual response patterns and characterized the response patterns with the genes referring to the previously accumulated findings including the biological process defined by the Gene Ontology Consortium (GO). Out of the 15 response patterns in which at least one gene was successfully extracted through the statistical approach, 11 response patterns were differentially characterized by representing the number of genes contained in individual criteria of the biological process in the GO only. The approach to dissect cellular responses into response patterns and to characterize the pattern at the gene expression level may contribute to the gaining of insight for untangling the diversity of cellular functions

    Quantum arbitrary waveform generator

    Full text link
    Controlling the waveform of light is the key for a versatile light source in classical and quantum electronics. Although pulse shaping of classical light is a mature technique and has been used in various fields, more advanced applications would be realized by a light source that generates arbitrary quantum light with arbitrary temporal waveform. We call such a device a quantum arbitrary waveform generator (Q-AWG). The Q-AWG must be able to handle versatile quantum states of light, which are fragile. Thus, the Q-AWG requires a radically different methodology from classical pulse shaping. In this paper, we invent an architecture of Q-AWGs that can operate semi-deterministically at a repetition rate over GHz in principal. We demonstrate its core technology via generating highly non-classical states with waveforms that have never been realized before. This result would lead to powerful quantum technologies based on Q-AWGs such as practical optical quantum computing.Comment: 24 pages, 5 figure

    Structural basis for the dual RNA-recognition modes of human Tra2-beta RRM

    Get PDF
    Human Transformer2-beta (hTra2-beta) is an important member of the serine/arginine-rich protein family, and contains one RNA recognition motif (RRM). It controls the alternative splicing of several pre-mRNAs, including those of the calcitonin/calcitonin gene-related peptide (CGRP), the survival motor neuron 1 (SMN1) protein and the tau protein. Accordingly, the RRM of hTra2-beta specifically binds to two types of RNA sequences [the CAA and (GAA)2 sequences]. We determined the solution structure of the hTra2-beta RRM (spanning residues Asn110–Thr201), which not only has a canonical RRM fold, but also an unusual alignment of the aromatic amino acids on the beta-sheet surface. We then solved the complex structure of the hTra2-beta RRM with the (GAA)2 sequence, and found that the AGAA tetra-nucleotide was specifically recognized through hydrogen-bond formation with several amino acids on the N- and C-terminal extensions, as well as stacking interactions mediated by the unusually aligned aromatic rings on the beta-sheet surface. Further NMR experiments revealed that the hTra2-beta RRM recognizes the CAA sequence when it is integrated in the stem-loop structure. This study indicates that the hTra2-beta RRM recognizes two types of RNA sequences in different RNA binding modes

    Semi-automated single-molecule microscopy screening of fast-dissociating specific antibodies directly from hybridoma cultures

    Get PDF
    Fast-dissociating, specific antibodies are single-molecule imaging probes that transiently interact with their targets and are used in biological applications including image reconstruction by integrating exchangeable single-molecule localization (IRIS), a multiplexable super-resolution microscopy technique. Here, we introduce a semi-automated screen based on single-molecule total internal reflection fluorescence (TIRF) microscopy of antibody-antigen binding, which allows for identification of fast-dissociating monoclonal antibodies directly from thousands of hybridoma cultures. We develop monoclonal antibodies against three epitope tags (FLAG-tag, S-tag, and V5-tag) and two F-actin crosslinking proteins (plastin and espin). Specific antibodies show fast dissociation with half-lives ranging from 0.98 to 2.2 s. Unexpectedly, fast-dissociating yet specific antibodies are not so rare. A combination of fluorescently labeled Fab probes synthesized from these antibodies and light-sheet microscopy, such as dual-view inverted selective plane illumination microscopy (diSPIM), reveal rapid turnover of espin within long-lived F-actin cores of inner-ear sensory hair cell stereocilia, demonstrating that fast-dissociating specific antibodies can identify novel biological phenomena

    Sardine procalcitonin amino-terminal cleavage peptide has a different action from calcitonin and promotes osteoblastic activity in the scales of goldfish

    Get PDF
    The nucleotide sequence of a sardine preprocalcitonin precursor has been determined from their ultimobranchial glands in the present study. From our analysis of this sequence, we found that sardine procalcitonin was composed of procalcitonin amino-terminal cleavage peptide (N-proCT) (53 amino acids), CT (32 amino acids), and procalcitonin carboxyl-terminal cleavage peptide (C-proCT) (18 amino acids). As compared with C-proCT, N-proCT has been highly conserved among teleosts, reptiles, and birds, which suggests that N-proCT has some bioactivities. Therefore, both sardine N-proCT and sardine CT were synthesized, and their bioactivities for osteoblasts and osteoclasts were examined using our assay system with goldfish scales that consisted of osteoblasts and osteoclasts. As a result, sardine N-proCT (10− 7 M) activated osteoblastic marker enzyme activity, while sardine CT did not change. On the other hand, sardine CT (10− 9 to 10− 7 M) suppressed osteoclastic marker enzyme activity, although sardine N-proCT did not influence enzyme activity. Furthermore, the mRNA expressions of osteoblastic markers such as type 1 collagen and osteocalcin were also promoted by sardine N-proCT (10− 7 M) treatment; however, sardine CT did not influence their expressions. The osteoblastic effects of N-proCT lack agreement. In the present study, we can evaluate exactly the action for osteoblasts because our scale assay system is very sensitive and it is a co-culture system for osteoblasts and osteoclasts with calcified bone matrix. Both CT and N-proCT seem to influence osteoblasts and osteoclasts and promote bone formation by different actions in teleosts. © 2017 Elsevier Inc.Embargo Period 12 month
    corecore