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Abstract Endothelial cells play an important role in terms of
biological functions by responding to a variety of stimuli in the
blood. However, little is known about the molecular mechanism
involved in rendering the variety in the cellular response. To
investigate the variety of the cellular responses against exo-
genous stimuli at the gene expression level, we attempted to
describe the cellular responses with comprehensive gene expression
profiles, dissect them into multiple response patterns, and char-
acterize the response patterns according to the information accu-
mulated so far on the genes included in the patterns. We
comparatively analyzed in parallel the gene expression profiles
obtained with DNA microarrays from normal human coronary
artery endothelial cells (HCAECs) stimulated with multiple
cytokines, interleukin-1b, tumor necrosis factor-a, interferon-b,
interferon-c, and oncostatin M, which are profoundly involved
in various functional responses of endothelial cells. These analy-
ses revealed that the cellular responses of HCAECs against these
cytokines included at least 15 response patterns specific to a
single cytokine or common to multiple cytokines. Moreover,
we statistically extracted genes contained within the individual
response patterns and characterized the response patterns with
the genes referring to the previously accumulated findings includ-
ing the biological process defined by the Gene Ontology Consor-
tium (GO). Out of the 15 response patterns in which at least one
gene was successfully extracted through the statistical approach,
11 response patterns were differentially characterized by repre-
senting the number of genes contained in individual criteria of
the biological process in the GO only. The approach to dissect
cellular responses into response patterns and to characterize
the pattern at the gene expression level may contribute to the
gaining of insight for untangling the diversity of cellular func-
tions.
� 2006 Published by Elsevier B.V. on behalf of the Federation of
European Biochemical Societies.
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1. Introduction

Endothelial cells that line the blood vessels are directly ex-

posed to a variety of stimulatory factors in the blood. In the

presence of the stimuli, endothelial cells appropriately modu-

late their responses with respect to the adhesion of leukocytes,

vasorelaxation, and immunity and play an important role in

maintaining homeostasis [1]. In addition, endothelial cells are

also involved in pathological processes such as thrombosis,

requisite neovascularization of solid tumors, and atherosclero-

sis [2–4]. Thus, it is important to understand in detail the re-

sponses of endothelial cells to a variety of exogenous factors.

Cytokines are factors that induce a wide range of responses

from endothelial cells. It has been difficult to uncover the differ-

ences and similarities in the responses of endothelial cells to

cytokines comprehensively. The reason is because several cyto-

kines share common signaling pathways consisting of identical

receptor subunits and exhibit similar responses to the expres-

sion of a small number of genes and to specific cellular pheno-

types.

Thus, it should be efficient to comprehensively analyze in

parallel multiple cellular responses against exogenous stimuli

via an identical platform in order to reveal the molecular

mechanism through which the heterogeneity of responses of

endothelial cells is rendered against the exogenous factors rep-

resented by cytokines. One of the platforms to conduct these

analyses in parallel includes comprehensive gene expression

profiling with DNA microarrays. So far, several studies have

been published on comprehensive analyses for responses of

endothelial cells exposed to cytokines [5–7]. These studies con-

sist of identifying genes the expression levels of which altered

in an identical or different fashion; such identification is done

by comparing the expression profiles obtained from endothe-

lial cells exposed to two or three species of cytokines side by

side comparing two samples on an identical microarray di-

rectly. Nevertheless, these direct comparisons among two or

three species of cytokines should be insufficient to fully under-

stand the differences and similarities in the heterogeneity of

cellular responses to cytokines.

Therefore, we sought to minutely dissect the responses of

endothelial cells to cytokines with comprehensive gene
ation of European Biochemical Societies.
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expression profiles obtained from normal human coronary

artery endothelial cells (HCAECs) that were exposed to the

cytokines interleukin-1b (IL-1b), tumor necrosis factor-a
(TNF-a), interferon-b (IFN-b), interferon-c (IFN-c), oncosta-

tin M (OSM), which are involved in a variety of cellular

functions and partially share signal transduction pathways

[8–10]. We obtained the gene expression profiles with synthetic

DNA microarrays containing approximately 22000 species of

probes and analyzed them in parallel. Here, we demonstrate

that simultaneous analyses of the expression profiles obtained

with these five cytokines enabled us to identify genes the

expression levels of which altered in single and multiple cyto-

kines-specific manners and to minutely dissect the cellular

responses of HCAECs to the cytokines.
2. Materials and methods

2.1. Cells
HCAECs (Product code, CC-2585; Age, 32Y) were purchased from

Cambrex Corp. (NJ, USA) and cultured under 5% CO2 at 37 �C with
EGM-2-MV medium (Cambrex Corp.) containing 5% fetal bovine ser-
um (FBS), hydrocortisone, human fibroblast growth factor (hFGF)-B,
vascular endothelial growth factor (VEGF), human recombinant insu-
lin-like growth factor (R3-IGF-1), ascorbic acid, human epidermal
growth factor (hEGF), and gentamicin/amphotericin B according to
the manufacturer’s instructions. HCAECs were split at 1:4 with
0.02% EDTA and 0.25% trypsin at a confluent density.

2.2. Cytokine effects on endothelial cells
HCAECs were maintained at the near confluent density 24 h before

the exposure experiments and subsequently replaced with fresh media
and incubated for another 24 h. At the fully confluent density, HCAECs
were exposed to the following cytokines and subsequently incubated for
another 24 h: IL-1b (R&D Systems, MN, USA) (1.1 nM), TNF-a
(R&D Systems) (0.3 nM or 10 nM), IFN-b (PeproTech Inc., NJ,
USA) (0.03 nM or 1.3 nM), IFN-c (R&D Systems) (0.04 nM or
0.5 nM), OSM (R&D Systems) (1.1 nM or 2.7 nM). The cells were trea-
ted at two different concentrations; one was slightly over the median
effective dose (ED50) specified by the manufacturers and other was
excessively over the ED50. As negative controls for exposure (mock sam-
ples), fresh medium containing no cytokines were added to the culture.

2.3. Poly A(+) RNA preparation
The cells were harvested 24 h after exposure to cytokines with TRI-

zol Reagent (Invitrogen Corp., CA, USA). The cell lysates obtained
were subjected to total RNA extraction according to the manufac-
turer’s instructions. Subsequently, total RNA was subjected to
polyA(+) RNA isolation with a MicroPoly(A) Purist Kit (Ambion
Inc., TX, USA) in accordance with the manufacturer’s instructions.
Eventually, polyA(+) RNA was divided into aliquots of 2 lg, precipi-
tated with ethanol, and stored at �20 �C.

2.4. Preparation of DNA microarrays and acquisition of gene expression
profiles

A set of synthetic polynucleotides (80-mers) representing 22512 spe-
cies of human transcript sequences that are mostly originated from the
Reference Sequence (RefSeq) project clones deposited in the National
Center for Biotechnology Information (NCBI) database was pur-
chased (MicroDiagnostic, Tokyo, Japan) and printed on a glass slide
(coated glass slide for the microarray, type I; Matsunami Glass Ind.,
Ltd., Kishiwada, Japan) with a custom-made arrayer (designated as
the 22K array) [11,12]. Two micrograms of poly(A)+ RNA were la-
beled with SuperScript II (Invitrogen Corp.) and cyanine 5-deoxyuri-
dine triphosphate (dUTP) (Perkin–Elmer Inc., MA, USA) for each
HCAECs sample or cyanine 3-dUTP (Perkin–Elmer Inc.) for a human
common reference RNA. The human common reference RNA was
prepared by mixing equal amounts of poly(A)+ RNA extracted from
22 cell lines (A431, A549, AKI, HBL-100, HeLa, HepG2, HL60,
IMR-32, Jurkat, K562, KP4, MKN7, NK-92, Raji, RD, Saos-2,
SK-N-MC, SW-13, T24, U251, U937, and Y79). Hybridization and
subsequent washes of the arrays were performed with a Labeling
and Hybridization Kit (MicroDiagnostic). Hybridization signals were
measured with a GenePix 4000A scanner (Axon Instruments Inc.,
Union City, CA) and then processed into primary expression ratios
(ratios of cyanine 5 intensity of each sample to cyanine 3 intensity of
the human common reference RNA) by the GenePix Pro 3.0 software
(Axon Instruments Inc.). Normalization was performed for each ratio
by multiplying the normalization factors calculated by the GenePix
Pro 3.0 software. The primary expression ratios were converted into
log2 values (designated as log ratios). All the data in accordance with
the MIAME guideline were deposited at DDBJ via CIBEX
(http://cibex.nig.ac.jp/index.jsp) in Accession Numbers CBX14.

2.5. Data analysis
Data processing and subsequent hierarchical clustering analysis were

conducted with an MDI gene expression analysis software package
(MicroDiagnostic). To compare the cytokine-treated samples against
the mock-treated samples (negative controls) for each cytokine, log ra-
tios obtained for the mock-treated samples were subtracted from the
log ratios obtained for each cytokine-treated sample (designated as rel-
ative log ratios) (Supplementary Table 1). Next, genes, the relative log
ratios of which in the two independent samples for each cytokine were
greater than 0.75 or smaller than �0.75, were extracted (Supplemen-
tary Table 2). In order to obtain data on these extracted genes, they
were processed into a matrix (rows, genes; columns, samples) and sub-
jected to two-dimensional hierarchical clustering analysis. Further-
more, for extracting genes that enabled us to distinguish between the
two groups of samples in terms of the presence or absence of the
expression alteration of interest (designated as the presence group
and the absence group, respectively), we calculated a statistical value
consisting of the absolute value of the difference between the mean
average of relative ratios among the presence group and that among
the absence group divided with the sum of the standard deviation of
the relative log ratios among the presence group and that among the
absence group (designated as signal:noise ratios); this was done for
all two-group combinations among the five individual cytokines. Even-
tually, we extracted genes that revealed signal:noise ratios that were
greater than two and absolute values of the relative log ratios for the
presence groups that were greater than 0.75.
3. Results

3.1. Acquisition of gene expression profiles

To investigate the heterogeneity of the responses of endothe-

lial cells, which line the blood vessels and are directly exposed

to a variety of stimulatory factors in the blood, to cytokine

stimulation in terms of alteration in gene expression, we

obtained comprehensive gene expression profiles with DNA

microarrays containing about 22000 species of probes for

human transcripts from HCAECs that were treated for 24 h

with the cytokines that are responsible to a variety of cellular

functions. In this study, we chose the following five cytokines

as models: IL-1b and TNF-a, both involved in inflammatory

responses following infection and tissue damages [13]; IFN-b
and IFN-c principal mediators in immune responses such as

antiviral activities and antitumorigenic activities [14,15]; and

OSM, involved in accelerative and inhibitory functions in

inflammation and in vascularization [16–19]. These cytokines

were exposed to HCAECs at two different concentrations in

two independent experiments to eliminate the genes in which

the expression levels are robustly affected by the differences

in the magnitude of stimulation.

3.2. Overview of alteration of gene expression in HCAECs after

cytokine stimulation

First, we extracted genes in which both relative log ratios

(see Section 2) in two different samples treated with identical

http://cibex.nig.ac.jp


Table 1
The number of genes that exhibited the alteration of expression levels
after individual cytokines

Treatment Upregulateda Downregulatedb Total

TNF-a 407 184 591
IL-1b 181 88 269
IFN-b 121 28 149
IFN-c 129 28 157
OSM 46 33 79

aThe number of increased genes that showed relative log ratio greater
than 0.75 across two independent samples treated with individual
cytokines.
bThe number of decreased genes that showed relative log ratio smaller
than �0.75 across two independent samples treated with individual
cytokines.
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Fig. 1. Comparison of gene expression profiles obtained from
HCAECs stimulated with cytokines. Robustly expressed genes after
stimulation with IL-1b, TNF-a, IFN-b, IFN-c, and OSM were
extracted and subjected to two-dimensional hierarchical clustering
analysis. Columns and rows indicate samples (10) and genes (789),
respectively. Genes and samples are aligned in the order defined by the
results of the clustering analysis. The dendrogram indicates the
relationship among the samples based on dissimilarity coefficients
calculated through the clustering analysis. The color bar at the bottom
of the figure represents the grades of the relative expression levels:
increase, red; decrease, blue. Each color box under the dendrogram at
the top of the figure depicts an individual cytokine: IL-1b, blue; TNF-
a, orange; IFN-b, pink; IFN-c, green; OSM, violet. All the relative log
ratios included in this figure are shown in Supplementary Table 2.
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cytokines were greater than 0.75 or smaller than �0.75; this

was done to concentrate only on the genes that were robustly

affected by the cytokine stimulation. The numbers of genes ex-

tracted under the abovementioned condition were: TNF-a,

591; IL-1b, 269; IFN-b, 149; IFN-c, 157; OSM, 79 (Table 1).

These results indicate that the most robust influence was in-

duced by TNF-a and the faintest influence was produced by

OSM at the gene expression level in HCAECs. Next, to com-

pare the cellular responses in HCAECs at the gene expression

level, we generated a data matrix with the genes described

above and subjected it to a two-dimensional hierarchical clus-

tering analysis (Fig. 1). The clustering analysis provided five

different sample clusters and each cluster consisted of two sam-

ples treated with identical cytokines (Fig. 1). Moreover, the

TNF-a and IL-1b clusters formed an identical larger cluster;

the IFN-b and IFN-c clusters generated an identical larger

cluster. These two larger clusters produced one of the largest

clusters in the dendrogram (Fig. 1). These results are consistent

with the previously reported findings that a pair of TNF-a and

IL-1b or that of IFN-b and IFN-c share similar activities in

terms of the alteration of gene expression and functional re-

sponses [20,21]. Moreover, we observed that the alteration of

gene expression in OSM-treated HCAECs was less robust than

those in the other four cytokine-treated cells and that the con-

stituents of the genes in which expression altered after the

OSM exposure were less overlapped compared to those found

in the other four cytokine-treated samples. Taken together,

these findings indicate that a parallel analysis of genes

extracted from expression profiles clearly distinguishes the

responses in the five cytokine-treated HCAECs in a cyto-

kine-specific manner.

3.3. Identification of genes that shared similar response patterns

among the different cytokine-treated samples

For the clustering analysis shown in Fig. 1 in the direction

across genes, we paid attention to the presence of genes in

which expression altered in multiple and single cytokine-spe-

cific manners. The reason is that the response patterns for

the alteration of gene expression should reflect the extent of

specificity and similarity in the responses of HCAECs against

these cytokines. Therefore, we sought to disclose the presence

of more minutely heterogeneous response patterns among the

five cytokines compared to those brought forth by the hierar-

chical clustering analysis (as shown in Fig. 1) and to identify

the genes included in the response patterns. For this advanced

purpose, we extracted genes from the data matrix of relative
log ratios by another statistical procedure; these genes were in-

cluded in all the two-group combinations of the five cytokines

(see Section 2).

The statistical extraction provided 15 species, each with dis-

tinct patterns (designated as response patterns) (Table 2). Out

of these 15 patterns, 10 response patterns were common to

multiple cytokines (response patterns A, B, C, D, I, J, K, L,

M, and N), whereas five response patterns were solely specific

to a single cytokine for all the five cytokines tested (response

patterns E, F, G, H, and O). Among the response patterns

solely specific to individual cytokines, the most prominent

response pattern was observed in a TNF-a-specific manner as

response pattern E consisting of 95 genes. On the other hand,

the most quiescent response pattern was seen in an IFN-b-

specific manner as response pattern O consisting of one gene

(Table 2).

The extracted 15 response patterns included identical genes

in duplicate across two response patterns. Response patterns

D and J included PLSCR1 in which expression increased



Table 2
Response patterns and the number of genes included in the response
patterns

Response
pattern

TNF-a IL-1b IFN-b IFN-c OSM Genesa

A + + + + 39
B + + 55
C + + + 9
D + + 7
E + 95
F + 28
G + 19
H + 10
I + + + + 1
J + + + 1
K + + + 1
L + + 1
M + + 1
N + + 1
O + 1

Notes: +, the presence of alteration (a constituent of the presence
group). Blank: the absence of alteration (a constituent of the absence
group). The meaning of alteration is as follows: (i) in the presence
group, the absolute value of the relative log ratio was greater than 0.75
for both of the two independent samples treated with individual
cytokines; (ii) the absolute value of the difference in the mean average
of the relative ratios divided by the sum of the standard deviation of
the relative ratios among each group for individual cytokines was
greater than 2.
aThe number of genes constituting each response pattern.
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after stimulation with all five cytokines. Response patterns B

and E included five genes (LTB, LAMC2, TNFAIP3, SDC-

CAG28, and D6S49E) in common; response patterns B and

F included four genes (CLU, SCYB5, SART-2, and MYO1B)

in common (all the full names of the genes are shown here

and below, while abbreviations are listed in Supplementary

Table 2).

Moreover, seven response patterns contained a single gene

as the constituent (response patterns I, J, K, L, M, N, and

O). These response patterns involved PLSCR1 in response pat-

tern J, GAGED2 in response pattern I, TNFAIP2 in response

pattern K, AKR1C3 in response pattern L, LOC58489 in re-

sponse pattern M, IER3 in response pattern N, and COLF6967

in response pattern O (Supplementary Fig. 1). Since these pat-

terns include a single gene only as each constituent, further

accumulation of experimental data obtained with a variety of

exogenous stimuli to multiple cell species and information on

gene ontology should be required to speculate the relevance

and biological significance of these patterns.

3.4. Genes in which expression altered similarly in a multiple

cytokine-specific manner

To study the kind of cellular responses represented by the re-

sponse patterns consisting of two and more genes (response

patterns A, B, C, D, E, F, G, and H), we analyzed the associ-

ation between the previously accumulated findings and the

individual genes included in the response patterns. First, we

confirmed that all the response patterns exhibited the two larg-

est clusters that should clearly distinguish the two groups of

interest among all the samples by hierarchical clustering anal-

ysis in the direction across the samples (Figs. 2 and 3). Next,

for genes encoding for actual proteins among those consisting

of these response patterns, we scrutinized the definition of bio-
logical process in Gene Ontology Consortium (GO) (http://

www.geneontology.org/) edited by Human Protein Reference

Database (http://www.hprd.org/) [22] and reference informa-

tion.

These results indicate that the cellular responses of

HCAECs include at least four different response patterns

defined by the alteration of the expression levels of genes, as

shown in Fig. 2, and that each response pattern contains

genes that are affected differently by two groups of cytokine,

i.e., the group for the presence of influence (the robustly influ-

ential group) and the one for the absence of influence (the

weakly influential group), which comprises at least two cyto-

kines.
3.5. Genes in which expression levels solely altered in a single

cytokine-specific manner

We continued an identical approach to characterize the

response patterns comprising genes in which expression levels

solely altered in a single cytokine-specific manner.

Fig. 3A shows the response pattern E consisting of genes

that exhibited robust alteration only after TNF-a stimulation.

Fig. 3B represents the response pattern F consisting of genes

that exhibited robust alteration only after IL-1b stimulation.

Fig. 3C displays the response pattern G consisting of genes

that exhibited robust alteration only after IFN-c stimulation.

Fig. 3D demonstrates the response pattern H consisting of

genes that exhibited strong alteration only after OSM stimula-

tion, including those that showed different expression changes

amongst each other in case of both OSM stimulation and IL-

1b and TNF-a stimulation and those that showed alteration

only after OSM stimulation.

These results indicate that cellular responses of HCAECs in-

clude at least four different response patterns defined by the

alteration of expression levels of genes shown in Fig. 3 and that

each response pattern contains genes solely affected by a single

cytokine. Furthermore, these results suggest the presence of

greatly different modulation mechanisms in HCAECs for the

OSM stimulation and the IL-1b and TNF-a stimulation path-

ways.
3.6. Comparison of 15 response patterns in parallel

Eventually, we sought to characterize all 15 response pat-

terns and compare them to one another by connecting the

number of genes belonging to each criterion in the biological

process to each response pattern (Table 3). Consequently, we

obtained the following findings. Genes that are well char-

acterized in function and involved in immune response fol-

lowing viral and bacterial infections were included

abundantly in the response patterns A (12 out of 39; 31%)

and G (7 out of 19; 37%) but scarcely in the response patterns

E. Genes associated with apoptosis were included in the re-

sponse patterns A, B, and E. Genes involved in cell growth/

maintenance were present in the response patterns B, E, F,

and H but absent in the other response patterns. Genes

related to protein metabolism were present in the response

patterns A, B, C, D, E, and G but absent in the other re-

sponse patterns. Between the response patterns A and D

and the response pattern B, we observed contrastive charac-

teristics with respect to protein metabolism; the response pat-

terns A exhibited an increased expression of constituents

belonging to the ubiquitin–proteasome system, including
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Fig. 2. Genes in which expression levels altered similarly in a multiple cytokine-specific manner. (A) Response pattern A consisting of 39 genes in
which expression levels altered similarly after stimulation with TNF-a, IL-1b, IFN-b, and IFN-c. (B) Response pattern B composed of 55 genes that
exhibited similar alteration of expression levels after stimulation with TNF-a and IL-1b. (C) Response pattern C comprising nine genes that exhibited
similar alteration of expression levels after stimulation with TNF-a, IFN-b, and IFN-c. (D) Response pattern D containing seven genes in which the
expression levels altered similarly after TNF-a and IFN-b stimulation. The color bars at the bottom right of the figure represents the grades of the
relative expression levels: increase, red; decrease, blue. Each color box at the top of the figure depicts an individual cytokine: IL-1b, blue; TNF-a,
orange; IFN-b, pink; IFN-c, green; OSM, violet. At the left side of each panel, the biological process for each gene contained is indicated, which is
defined in the Gene Ontology Consortium (http://www.geneontology.org/). At the right side of each panel, the accession number and gene ID for
each gene contained is demonstrated, which is derived from the National Center for Biotechnology Information (NCBI) Reference Sequences (http://
www.ncbi.nlm.nih.gov/RefSeq/). The full name of each gene is shown in Supplementary Table 2, linked to each Gene ID. All the relative log ratios
included in this figure are shown in Supplementary Table 3.
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PSMB9 and PSME2, and the response pattern D showed the

decreased expression of elongation factors, namely, EEF2 and

EEF1B2, whereas the response pattern B exhibited an in-

creased expression of an inhibitory factor for proteolysis,

SERPINE1.

Overall, these results indicate that out of the 15 response

patterns in which at least one gene was successfully extracted
through the statistical approach, 11 response patterns were dif-

ferentially characterized by representing the number of genes

contained in individual criteria of the biological process in

the GO only. These suggest that the approach to link the genes

constituting the response patterns with the biological process

defined by the GO may endorse the classification with the re-

sponse patterns as being biologically meaningful.

http://www.geneontology.org
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
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Fig. 3. Genes in which expression levels solely altered in an individual cytokine-specific manner. (A) Response pattern E consisting of 95 genes that
exhibited expression alteration only after TNF-a stimulation. (B) Response pattern F comprising 28 genes that demonstrated expression alteration
only after IL-1b stimulation. (C) Response pattern G composed of 19 genes that exhibited expression alteration only after IFN-c stimulation. (D)
Response pattern H consisting of 10 genes that showed expression alteration only after OSM stimulation. All the relative log ratios included in this
figure are shown in Supplementary Table 4.
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Table 3
Distribution of the number of genes assigned to the major criteria of the biological process defined by the Gene Ontology Consortium (GO)

Biological processa Response pattern

A B C D E F G H I J K L M N O

Anti-apoptosis 1
Apoptosis 2 3 1
Cell adhesion 1 1 1
Cell communication; signal transduction 2 11 1 23 5 4 2 1
Cell death 1
Cell growth and/or maintenance 3 4 3 1
Cell maturation 1 1
Cell proliferation 1
DNA repair 1
Fatty acid metabolism 1
Immune response 12 8 2 1 1 5 7
Inflammatory response 1 1
Metabolism; energy pathways 2 2 4 1
Protein folding 1
Protein metabolism 3 2 2 2 8 1
Regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolism 5 5 2 1 13 1 1
RNA metabolism 1
Transport 3 2 1 2 2 3 1 1
Unclassified/biological_process unknown 1 6 1 10 5 5 1
Unclassified/unannotated 9 14 1 24 5 1 5 1 1 1 1

aEach gene is assigned to all the corresponding criteria of the biological process defined by GO (http://www.geneontology.org/) in a repetitive
manner.
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4. Discussion

In this study, we compared in parallel the cellular response

of HCAECs to the cytokines, such as IL-1b, TNF-a, IFN-b,

IFN-c, and OSM, which are profoundly associated with the

immune and inflammatory reactions in endothelial cells from

the standpoint of the comprehensive alteration in gene expres-

sion. We conducted two independent approaches to analyze

expression profiles obtained from HCAECs stimulated with

these cytokines. One was hierarchical clustering analysis done

only with genes in which expression levels altered robustly

after the stimulation; the other was statistical extraction of

the genes of interest from all the profiles divided into all com-

binations of two groups among five cytokines. Based on the re-

sults of the clustering analysis in the direction across samples,

we concluded that these genes are responsible for distinguish-

ably classifying these five cytokines at the gene expression

level. Moreover, based on the results of the statistical

extraction of the genes, we concluded that cellular responses

after stimulation with these five cytokines solely described by

gene expression ratios were composed of at least 15 patterns

(designated as response patterns) (Table 2), identifying genes

that constitute the individual response patterns. Eventually,

we linked these genes constituting the response patterns with

the biological process defined by the GO and endorsed the

classification with the response patterns as being biologically

meaningful (Table 3).

As an experimental model system to investigate the re-

sponses of endothelial cells to a variety of exogenous stimuli,

we chose five cytokines associated with inflammation and

HCAECs under a flat culture condition. Since HCAECs are

reported to exhibit different responses to inflammation cyto-

kines when compared to human umbilical vein endothelial cells

and human pulmonary artery endothelial cells in terms of gene

expression and protein secretion [23,24], it may be appropriate

that the implication of our findings presented here should be
restricted to HCAECs as a model. Further experiments should

be required with other subtypes of endothelial cells in addition

to different lots of HCAECs under distinct culture conditions

such as those that allow endothelial cells to form tubular struc-

tures to establish more general implication of endothelial cell

responses to the cytokines used in this study. Moreover,

although we chose a single time point of 24 h after cytokine

exposure since we failed to obtain robust alteration at the gene

expression level in preliminary experiments with smaller micro-

arrays at the time point of 4 h and 12 h after treatment (data

not shown) and we could not observe obvious differences be-

tween expression profiles obtained from two independent sam-

ples treated with an identical cytokine (data not shown), data

extensively obtained at earlier and later time points at multiple

concentrations of cytokines may provide findings to reveal the

kinetics of modulation in gene expression after the cytokine

stimulation.

The results shown here indicate that our approach of ana-

lyzing the cellular responses of HCAECs to five individual

cytokines from the novel standpoint of similarity and diversity

in the alteration of gene expression levels is capable of identi-

fying new description and classification of the constituents of

the cellular response. Previously, several studies were con-

ducted with DNA microarrays for analyzing the alteration

of gene expression in endothelial cells after stimulation with

cytokines [5–7]. Among them, the most minutely conducted

study reported on the identification of the expression levels

that altered in a TNF-a and IFN-c-specific manner from

the expression profiles obtained with five species of endothe-

lial cells and three individual inflammatory cytokines (TNF-

a, IFN-c, and IL-4), a total of 15 individual samples ana-

lyzed in parallel [6]. In addition, the authors paid attention

to the tissue specificity of endothelial cells and the functional

specificity among three individual cytokines and isolated

marker genes for individual cytokine function in respective

species of endothelial cells. Similar to this report, most of

http://www.geneontology.org
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the previous studies focused on identifying markers specific to

stimulation or to tissues and cells. In contrast, we at first fo-

cused on analyzing minutely the cellular responses solely de-

scribed with gene expression ratios prior to identifying the

specific marker genes. The 15 response patterns found in this

study (response patterns A�O) consist of genes belonging to

various categories in the biological process outlined by GO

in a response pattern-specific manner (Table 3). Thus, it is

possible to remark that these response patterns are character-

ized by itself with a constitution of the numbers and species of

genes included.

In this study, we chose cytokines as representative factors to

stimulate endothelial cells. Endothelial cells respond to cyto-

kines present in local microenvironments through altering gene

expression. The cellular response induces a variety of altera-

tions such as the promotion of the recruiting of immune cells

via surface molecules expressed on the endothelial cells, in-

crease in vascular permeability, and proliferation or apoptosis

of the endothelial cells themselves [25–28]. However, endothe-

lial cells should respond not only to secretory factors like cyto-

kines but to humoral factors that derived exogenously such as

endotoxins [29] and physical factors such as shear stress [30].

Therefore, in order to understand comprehensively the diver-

sity of the response of endothelial cells, it is essential to system-

atically study the responses induced by diverse stimulations

including physical, chemical, and biological factors. To achieve

these systematic collections of cellular samples after various

stimulations, it should be inevitable to comparatively analyze

in parallel a great number of expression profiles on an identical

platform. Our microarray system used in this study may con-

tribute to establishing such a systematic analysis for the re-

sponse of endothelial cells to the diverse stimulation since

our system successfully analyzed 130 expression profiles in par-

allel [12].

Dysfunctions of endothelial cells are profoundly associated

with a variety of pathological processes such as disseminated

intravascular coagulation [31] and tumor progression [32].

Although focused studies have been conducted on these dis-

eases recently, the pathological mechanism of these diseases

and the response of endothelial cells involved in the mecha-

nism are not fully understood. Comparative analysis in parallel

for comprehensive gene expression profiles obtained with

DNA microarrays from endothelial cells enables us to investi-

gate the response of endothelial cells to a variety of exogenous

stimulations from an extensive and minute standpoint. We ex-

pect that it may be contributable to the analysis of genes in

such a way that it facilitates the understanding of the response

of endothelial cells that are peculiar to vascular diseases and

help in the invention of novel therapeutic targets for these dis-

eases.
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