75 research outputs found

    後漢順帝の親政とその統治の展開

    Get PDF
    departmental bulletin pape

    梁冀政権の権力構造

    Get PDF
    departmental bulletin pape

    Assay procedures for cathepsin B, H and L activities in rat tissue homogenates.

    Get PDF
    Cathepsin B, H and L activities in small amounts of rat tissue homogenates corresponding to 10 micrograms protein were determined with 7-amino-4-methyl-coumarin conjugates as substrates. A new procedure for serum cathepsin H activity was also developed. High cathepsin B and H activities were found in kidney, spleen and liver. Liver cathepsin B, H and L activities in D-galactosamine-injured rats were decreased concomitantly with an increase in serum cathepsin H activity.</p

    Detection of type V collagen-degrading enzyme activity in human liver.

    Get PDF
    &lt;p&gt;Type V collagen-degrading enzyme activity was detected as a metalloprotease acting at neutral pH in the human liver. Type V collagen extracted from human placenta and labeled with [1-14C] acetic anhydride was used as the substrate in the assay. Four major degradation products with relatively high molecular weights were observed upon polyacrylamide gel electrophoresis of the incubation mixture of type V collagen and liver homogenate. The significance of the measurement of this enzyme activity was discussed in relation to the clarification of the mechanism of liver fibrosis.&lt;/p&gt;</p

    Enzyme systems involved in glucosinolate metabolism in Companilactobacillus farciminis KB1089

    Get PDF
    Cruciferous vegetables are rich sources of glucosinolates (GSLs). GSLs are degraded into isothiocyanates, which are potent anticarcinogens, by human gut bacteria. However, the mechanisms and enzymes involved in gut bacteria-mediated GSL metabolism are currently unclear. This study aimed to elucidate the enzymes involved in GSL metabolism in lactic acid bacteria, a type of gut bacteria. Companilactobacillus farciminis KB1089 was selected as a lactic acid bacteria strain model that metabolizes sinigrin, which is a GSL, into allylisothiocyanate. The sinigrin-metabolizing activity of this strain is induced under glucose-absent and sinigrin-present conditions. A quantitative comparative proteomic analysis was conducted and a total of 20 proteins that were specifically expressed in the induced cells were identified. Three candidate proteins, β-glucoside-specific IIB, IIC, IIA phosphotransferase system (PTS) components (CfPttS), 6-phospho-β-glucosidase (CfPbgS) and a hypothetical protein (CfNukS), were suspected to be involved in sinigrin-metabolism and were thus investigated further. We hypothesize a pathway for sinigrin degradation, wherein sinigrin is taken up and phosphorylated by CfPttS, and subsequently, the phosphorylated entity is degraded by CfPbgS. As expression of both pttS and pbgS genes clearly gave Escherichia coli host strain sinigrin converting activity, these genes were suggested to be responsible for sinigrin degradation. Furthermore, heterologous expression analysis using Lactococcus lactis suggested that CfPttS was important for sinigrin degradation and CfPbgS degraded phosphorylated sinigrin

    Five-antituberculosis Drug-resistance Genes Detection Using Array System

    Get PDF
    Detection of resistance to drugs for Mycobacterium tuberculosis takes about two months from the sample collection using culture-based methods. To test a rapid method for detection of resistance for five antituberculosis drugs using DNA microarray and to examine its potential for clinical use, we employed a DNA microarray for detection of seven mutations genes related to resistance of five kinds of antituberculous drugs using Mycobacterium tuberculosis DNA isolated from sputum. The results of microarray analysis were compared with the results of a standard culture method of Lowenstein-jensen drug sensitivity testing system. DNA microarray analysis showed a high sensitivity (>90%) for all five drugs. Specificity of rifampicin and ethambutol were nearly 90%, however specificity of isoniazid (60%) and kanamycin (67%) were not enough. The amount of Mycobacterium tuberculosis DNA required for microarray analysis corresponded to at least 1–9 Acid-Fast Bacilli per 10 fields by carbolfuchsin staining. DNA microarray analysis appears to be useful for estimation of drug resistances, nevertheless its limitations. To minimize misunderstanding, it is necessary to confirm the number of bacilli in the sputum, and culture method is needed for comparison when use the PCR-based array system

    Genomic surveillance of Neisseria gonorrhoeae to investigate the distribution and evolution of antimicrobial-resistance determinants and lineages

    Get PDF
    The first extensively drug resistant (XDR) Neisseria gonorrhoeae strain with high resistance to the extended-spectrum cephalosporin ceftriaxone was identified in 2009 in Japan, but no other strain with this antimicrobial-resistance profile has been reported since. However, surveillance to date has been based on phenotypic methods and sequence typing, not genome sequencing. Therefore, little is known about the local population structure at the genomic level, and how resistance determinants and lineages are distributed and evolve. We analysed the whole-genome sequence data and the antimicrobial-susceptibility testing results of 204 strains sampled in a region where the first XDR ceftriaxone-resistant N. gonorrhoeae was isolated, complemented with 67 additional genomes from other time frames and locations within Japan. Strains resistant to ceftriaxone were not found, but we discovered a sequence type (ST)7363 sub-lineage susceptible to ceftriaxone and cefixime in which the mosaic penA allele responsible for reduced susceptibility had reverted to a susceptible allele by recombination. Approximately 85 % of isolates showed resistance to fluoroquinolones (ciprofloxacin) explained by linked amino acid substitutions at positions 91 and 95 of GyrA with 99 % sensitivity and 100 % specificity. Approximately 10 % showed resistance to macrolides (azithromycin), for which genetic determinants are less clear. Furthermore, we revealed different evolutionary paths of the two major lineages: single acquisition of penA X in the ST7363-associated lineage, followed by multiple independent acquisitions of the penA X and XXXIV in the ST1901-associated lineage. Our study provides a detailed picture of the distribution of resistance determinants and disentangles the evolution of the two major lineages spreading worldwide
    corecore