36,394 research outputs found

    Potential inversion with subbarrier fusion data revisited

    Get PDF
    We invert experimental data for heavy-ion fusion reactions at energies well below the Coulomb barrier in order to directly determine the internucleus potential between the colliding nuclei. In contrast to the previous applications of the inversion formula, we explicitly take into account the effect of channel couplings on fusion reactions, by assuming that fusion cross sections at deep subbarrier energies are governed by the lowest barrier in the barrier distribution. We apply this procedure to the 16^{16}O +144^{144}Sm and 16^{16}O +208^{208}Pb reactions, and find that the inverted internucleus potential are much thicker than phenomenological potentials. A relation to the steep fall-off phenomenon of fusion cross sections recently found at deep subbarrier energies is also discussed.Comment: 5 pages, 3 eps figure

    Roles of Critical Valence Fluctuations in Ce- and Yb-Based Heavy Fermion Metals

    Full text link
    The roles of critical valence fluctuations of Ce and Yb are discussed as a key origin of several anomalies observed in Ce- and Yb-based heavy fermion systems. Recent development of the theory has revealed that a magnetic field is an efficient control parameter to induce the critical end point of the first-order valence transition. Metamagnetism and non-Fermi liquid behavior caused by this mechanism are discussed by comparing favorably with CeIrIn5, YbAgCu4, and YbIr2Zn20. The interplay of the magnetic order and valence fluctuations offers a key concept for understanding Ce- and Yb-based systems. It is shown that suppression of the magnetic order by enhanced valence fluctuations gives rise to the coincidence of the magnetic-transition point and valence-crossover point at absolute zero as a function of pressure or magnetic field. The interplay is shown to resolve the outstanding puzzle in CeRhIn5 in a unified way. The broader applicability of this newly clarified mechanism is discussed by surveying promising materials such as YbAuCu4, beta-YbAlB4, and YbRh2Si2.Comment: 17 pages, 8 figures, invited paper in special issue on strongly correlated electron system

    Quantum Valence Criticality as Origin of Unconventional Critical Phenomena

    Full text link
    It is shown that unconventional critical phenomena commonly observed in paramagnetic metals YbRh2Si2, YbRh2(Si0.95Ge0.05)2, and beta-YbAlB4 is naturally explained by the quantum criticality of Yb-valence fluctuations. We construct the mode coupling theory taking account of local correlation effects of f electrons and find that unconventional criticality is caused by the locality of the valence fluctuation mode. We show that measured low-temperature anomalies such as divergence of uniform spin susceptibility \chi T^{-\zeta) with ζ 0.6\zeta~0.6 giving rise to a huge enhancement of the Wilson ratio and the emergence of T-linear resistivity are explained in a unified way.Comment: 5 pages, 3 figures, to be published in Physical Review Letter

    Heavy Fermion superconductor CeCu2_2Si2_2 under high pressure: multiprobing the valence crossover

    Full text link
    The first heavy fermion superconductor CeCu2_2Si2_2 has not revealed all its striking mysteries yet. At high pressures, superconductivity is supposed to be mediated by valence fluctuations, in contrast to ambient pressure, where spin fluctuations most likely act as pairing glue. We have carried out a multiprobe (electric transport, thermopower, ac specific heat, Hall and Nernst effects) experiment up to 7GPa7 \text{GPa} on a high quality CeCu2_2Si2_2 single crystal. Reliable resistivity data reveal for the first time a scaling behavior close to the supposed valence transition, and allow to locate the critical end point at 4.5±0.2GPa4.5\pm0.2 \text{GPa} and a slightly negative temperature. In the same pressure region, remarkable features have also been detected in the other physical properties, acting as further signatures of the Ce valence crossover and the associated critical fluctuations.Comment: 13 pages, 14 figure

    Mechanical cleaning of graphene

    Full text link
    Contamination of graphene due to residues from nanofabrication often introduces background doping and reduces charge carrier mobility. For samples of high electronic quality, post-lithography cleaning treatments are therefore needed. We report that mechanical cleaning based on contact mode AFM removes residues and significantly improves the electronic properties. A mechanically cleaned dual-gated bilayer graphene transistor with hBN dielectrics exhibited a mobility of ~36,000 cm2/Vs at low temperature.Comment: 4 pages, 4 figure

    Ferromagnetism in a Hubbard model for an atomic quantum wire: a realization of flat-band magnetism from even-membered rings

    Full text link
    We have examined a Hubbard model on a chain of squares, which was proposed by Yajima et al as a model of an atomic quantum wire As/Si(100), to show that the flat-band ferromagnetism according to a kind of Mielke-Tasaki mechanism should be realized for an appropriate band filling in such a non-frustrated lattice. Reflecting the fact that the flat band is not a bottom one, the ferromagnetism vanishes, rather than intensified, as the Hubbard U is increased. The exact diagonalization method is used to show that the critical value of U is in a realistic range. We also discussed the robustness of the magnetism against the degradation of the flatness of the band.Comment: misleading terms and expressions are corrected, 4 pages, RevTex, 5 figures in Postscript, to be published in Phys. Rev. B (rapid communication

    A Relativistic Description of Gentry's New Redshift Interpretation

    Get PDF
    We obtain a new expression of the Friedmann-Robertson-Walker metric, which is an analogue of a static chart of the de Sitter space-time. The reduced metric contains two functions, M(T,R)M(T,R) and Ψ(T,R)\Psi(T,R), which are interpreted as, respectively, the mass function and the gravitational potential. We find that, near the coordinate origin, the reduced metric can be approximated in a static form and that the approximated metric function, Ψ(R)\Psi(R), satisfies the Poisson equation. Moreover, when the model parameters of the Friedmann-Robertson-Walker metric are suitably chosen, the approximated metric coincides with exact solutions of the Einstein equation with the perfect fluid matter. We then solve the radial geodesics on the approximated space-time to obtain the distance-redshift relation of geodesic sources observed by the comoving observer at the origin. We find that the redshift is expressed in terms of a peculiar velocity of the source and the metric function, Ψ(R)\Psi(R), evaluated at the source position, and one may think that this is a new interpretation of {\it Gentry's new redshift interpretation}.Comment: 11 pages. Submitted to Modern Physics Letters

    Magnetic anisotropy switching in (Ga,Mn)As with increasing hole concentration

    Full text link
    We study a possible mechanism of the switching of the magnetic easy axis as a function of hole concentration in (Ga,Mn)As epilayers. In-plane uniaxial magnetic anisotropy along [110] is found to exceed intrinsic cubic magnetocrystalline anisotropy above a hole concentration of p = 1.5 * 10^21 cm^-3 at 4 K. This anisotropy switching can also be realized by post-growth annealing, and the temperature-dependent ac susceptibility is significantly changed with increasing annealing time. On the basis of our recent scenario [Phys. Rev. Lett. 94, 147203 (2005); Phys. Rev. B 73, 155204 (2006).], we deduce that the growth of highly hole-concentrated cluster regions with [110] uniaxial anisotropy is likely the predominant cause of the enhancement in [110] uniaxial anisotropy at the high hole concentration regime. We can clearly rule out anisotropic lattice strain as a possible origin of the switching of the magnetic anisotropy.Comment: 5 pages, 4 figures, to appear in Phys. Rev.

    Diffuse MeV Gamma-rays and Galactic 511 keV Line from Decaying WIMP Dark Matter

    Full text link
    The origin of both the diffuse high-latitude MeV gamma-ray emission and the 511 keV line flux from the Galactic bulge are uncertain. Previous studies have invoked dark matter physics to independently explain these observations, though as yet none has been able to explain both of these emissions within the well-motivated framework of Weakly-Interacting Massive Particles (WIMPs). Here we use an unstable WIMP dark matter model to show that it is in fact possible to simultaneously reconcile both of these observations, and in the process show a remarkable coincidence: decaying dark matter with MeV mass splittings can explain both observations if positrons and photons are produced with similar branching fractions. We illustrate this idea with an unstable branon, which is a standard WIMP dark matter candidate appearing in brane world models with large extra dimensions. We show that because branons decay via three-body final states, they are additionally unconstrained by searches for Galactic MeV gamma-ray lines. As a result, such unstable long-lifetime dark matter particles provide novel and distinct signatures that can be tested by future observations of MeV gamma-rays.Comment: 19 pages, 4 figure
    corecore