37 research outputs found

    Reheating processes after Starobinsky inflation in old-minimal supergravity

    Full text link
    We study reheating processes and its cosmological consequences in the Starobinsky model embedded in the old-minimal supergravity. First, we consider minimal coupling between the gravity and matter sectors in the higher curvature theory, and transform it to the equivalent standard supergravity coupled to additional matter superfields. We then discuss characteristic decay modes of the inflaton and the reheating temperature TRT_{\rm R}. Considering a simple model of supersymmetry breaking sector, we estimate gravitino abundance from inflaton decay, and obtain limits on the masses of gravitino and supersymmetry breaking field. We find TR1.0×109T_{\rm R}\simeq 1.0\times10^9 GeV and the allowed range of gravitino mass as 10410^4 GeV m3/2105\lesssim m_{3/2} \lesssim 10^5 GeV, assuming anomaly-induced decay into the gauge sector as the dominant decay channel.Comment: 24 pages, 1 figure, appendix added for clarification, typos fixed, results unchanged, version accepted in JHE

    Paleoclimatic and paleoceanographic records through Marine Isotope Stage 19 at the Chiba composite section, central Japan: A key reference for the EarlyeMiddle Pleistocene Subseries boundary

    Get PDF
    Marine Isotope Stage (MIS) 19 is an important analogue for the present interglacial because of its similar orbital configuration, especially the phasing of the obliquity maximum to precession minimum. However, sedimentary records suitable for capturing both terrestrial and marine environmental changes are limited, and thus the climatic forcing mechanisms for MIS 19 are still largely unknown. The Chiba composite section, east-central Japanese archipelago, is a continuous and expanded marine sedimentary succession well suited to capture terrestrial and marine environmental changes through MIS 19. In this study, a detailed oxygen isotope chronology is established from late MIS 20 to early MIS 18, supported by a U-Pb zircon age and the presence of the Matuyama–Brunhes boundary. New pollen, marine microfossil, and planktonic foraminiferal δ18O and Mg/Ca paleotemperature records reveal the complex interplay of climatic influences. Our pollen data suggest that the duration of full interglacial conditions during MIS 19 extends from 785.0 to 775.1 ka (9.9 kyr), which offers an important natural baseline in predicting the duration of the present interglacial. A Younger Dryas-type cooling event is present during Termination IX, suggesting that such events are linked to this orbital configuration. Millennial- to multi-millennial-scale variations in our δ18O and Mg/Ca records imply that the Subarctic Front fluctuated in the northwestern Pacific Ocean during late MIS 19, probably in response to East Asian winter monsoon variability. The climatic setting at this time appears to be related to less severe summer insolation minima at 65˚N and/or high winter insolation at 50˚N. Our records do not support a recently hypothesized direct coupling between variations in the geomagnetic field intensity and global/regional climate change. Our highly resolved paleoclimatic and paleoceanographic records, coupled with a well-defined Matuyama–Brunhes boundary (772.9 ka; duration 1.9 kyr), establish the Chiba composite section as an exceptional climatic and chronological reference section for the Early–Middle Pleistocene boundary.ArticleQuaternary Science Reviews 191: 406-430(2018)journal articl

    Isotope production in proton-, deuteron-, and carbon-induced reactions on Nb 93 at 113 MeV/nucleon

    Get PDF
    Isotope-production cross sections for p-, d-, and C-induced spallation reactions on Nb93 at 113 MeV/nucleon were measured using the inverse-kinematics method employing secondary targets of CH2, CD2, and C. The measured cross sections for Mo90, Nb90, Y86,88 produced by p-induced reactions were found to be consistent with those measured by the conventional activation method. We performed benchmark tests of the reaction models INCL-4.6, JQMD, and JQMD-2.0 implemented in the Particle and Heavy Ion Transport code System (PHITS) and of the nuclear data libraries JENDL-4.0/HE, TENDL-2017, and ENDF/B-VIII.0. The model calculations also showed generally good agreement with the measured isotope-production cross sections for p-, d-, and C-induced reactions. It also turns out that, among the three nuclear data libraries, JENDL-4.0/HE provides the best agreement with the measured data for the p-induced reactions. We compared the present Nb93 data with the Zr93 data, that were measured previously by the same inverse kinematics method (Kawase et al., Prog. Theor. Exp. Phys. 2017, 093D03 (2017)2050-391110.1093/ptep/ptx110), with particular attention to the effect of neutron-shell closure on isotope production in p- and d-induced spallation reactions. The isotopic distributions of the measured production cross sections in the Zr93 data showed noticeable jumps at neutron number N=50 in the isotopic chains of ΔZ=0 and -1, whereas no such jump appeared in isotopic chain of ΔZ=0 in the Nb93 data. From INCL-4.6 + GEM calculations, we found that the jump formed in the evaporation process is smeared out by the intranuclear cascade component in Nb91 produced by the Nb93(p,p2n) and (d,d2n) reactions on Nb93. Moreover, for Nb93, the distribution of the element-production cross sections as a function of the change in proton number ΔZ is shifted to smaller ΔZ than for Zr93, because the excited Nb prefragments generated by the cascade process are more likely to emit protons than the excited Zr prefragments, due to the smaller proton-separation energies of the Nb isotopes

    Observation results by the TAMA300 detector on gravitational wave bursts from stellar-core collapses

    Get PDF
    We present data-analysis schemes and results of observations with the TAMA300 gravitational-wave detector, targeting burst signals from stellar-core collapse events. In analyses for burst gravitational waves, the detection and fake-reduction schemes are different from well-investigated ones for a chirp-wave analysis, because precise waveform templates are not available. We used an excess-power filter for the extraction of gravitational-wave candidates, and developed two methods for the reduction of fake events caused by non-stationary noises of the detector. These analysis schemes were applied to real data from the TAMA300 interferometric gravitational wave detector. As a result, fake events were reduced by a factor of about 1000 in the best cases. The resultant event candidates were interpreted from an astronomical viewpoint. We set an upper limit of 2.2x10^3 events/sec on the burst gravitational-wave event rate in our Galaxy with a confidence level of 90%. This work sets a milestone and prospects on the search for burst gravitational waves, by establishing an analysis scheme for the observation data from an interferometric gravitational wave detector

    Current status of space gravitational wave antenna DECIGO and B-DECIGO

    Get PDF
    Deci-hertz Interferometer Gravitational Wave Observatory (DECIGO) is the future Japanese space mission with a frequency band of 0.1 Hz to 10 Hz. DECIGO aims at the detection of primordial gravitational waves, which could be produced during the inflationary period right after the birth of the universe. There are many other scientific objectives of DECIGO, including the direct measurement of the acceleration of the expansion of the universe, and reliable and accurate predictions of the timing and locations of neutron star/black hole binary coalescences. DECIGO consists of four clusters of observatories placed in the heliocentric orbit. Each cluster consists of three spacecraft, which form three Fabry-Perot Michelson interferometers with an arm length of 1,000 km. Three clusters of DECIGO will be placed far from each other, and the fourth cluster will be placed in the same position as one of the three clusters to obtain the correlation signals for the detection of the primordial gravitational waves. We plan to launch B-DECIGO, which is a scientific pathfinder of DECIGO, before DECIGO in the 2030s to demonstrate the technologies required for DECIGO, as well as to obtain fruitful scientific results to further expand the multi-messenger astronomy.Comment: 10 pages, 3 figure

    Cross sections for nuclide production in proton- and deuteron-induced reactions on 93

    Full text link
    Isotopic production cross sections were measured for proton- and deuteron-induced reactions on 93Nb by means of the inverse kinematics method at RIKEN Radioactive Isotope Beam Factory. The measured production cross sections of residual nuclei in the reaction 93Nb + p at 113 MeV/u were compared with previous data measured by the conventional activation method in the proton energy range between 46 and 249 MeV. The present inverse kinematics data of four reaction products (90Mo, 90Nb, 88Y, and 86Y) were in good agreement with the data of activation measurement. Also, the model calculations with PHITS describing the intra-nuclear cascade and evaporation processes generally well reproduced the measured isotopic production cross sections

    Current status of space gravitational wave antenna DECIGO and B-DECIGO

    Get PDF
    The Deci-hertz Interferometer Gravitational Wave Observatory (DECIGO) is a future Japanese space mission with a frequency band of 0.1 Hz to 10 Hz. DECIGO aims at the detection of primordial gravitational waves, which could have been produced during the inflationary period right after the birth of the Universe. There are many other scientific objectives of DECIGO, including the direct measurement of the acceleration of the expansion of the Universe, and reliable and accurate predictions of the timing and locations of neutron star/black hole binary coalescences. DECIGO consists of four clusters of observatories placed in heliocentric orbit. Each cluster consists of three spacecraft, which form three Fabry–Pérot Michelson interferometers with an arm length of 1000 km. Three DECIGO clusters will be placed far from each other, and the fourth will be placed in the same position as one of the other three to obtain correlation signals for the detection of primordial gravitational waves. We plan to launch B-DECIGO, which is a scientific pathfinder for DECIGO, before DECIGO in the 2030s to demonstrate the technologies required for DECIGO, as well as to obtain fruitful scientific results to further expand multi-messenger astronomy
    corecore