162 research outputs found

    Cell cycle-dependent phosphorylation of Theileria annulata schizont surface proteins

    Get PDF
    The invasion of Theileria sporozoites into bovine leukocytes is rapidly followed by the destruction of the surrounding host cell membrane, allowing the parasite to establish its niche within the host cell cytoplasm. Theileria infection induces host cell transformation, characterised by increased host cell proliferation and invasiveness, and the activation of anti-apoptotic genes. This process is strictly dependent on the presence of a viable parasite. Several host cell kinases, including PI3-K, JNK, CK2 and Src-family kinases, are constitutively activated in Theileria-infected cells and contribute to the transformed phenotype. Although a number of host cell molecules, including IkB kinase and polo-like kinase 1 (Plk1), are recruited to the schizont surface, very little is known about the schizont molecules involved in host-parasite interactions. In this study we used immunofluorescence to detect phosphorylated threonine (p-Thr), serine (p-Ser) and threonine-proline (p-Thr-Pro) epitopes on the schizont during host cell cycle progression, revealing extensive schizont phosphorylation during host cell interphase. Furthermore, we established a quick protocol to isolate schizonts from infected macrophages following synchronisation in S-phase or mitosis, and used mass spectrometry to detect phosphorylated schizont proteins. In total, 65 phosphorylated Theileria proteins were detected, 15 of which are potentially secreted or expressed on the surface of the schizont and thus may be targets for host cell kinases. In particular, we describe the cell cycle-dependent phosphorylation of two T. annulata surface proteins, TaSP and p104, both of which are highly phosphorylated during host cell S-phase. TaSP and p104 are involved in mediating interactions between the parasite and the host cell cytoskeleton, which is crucial for the persistence of the parasite within the dividing host cell and the maintenance of the transformed state

    Integrative transcriptome and proteome analyses define marked differences between Neospora caninum isolates throughout the tachyzoite lytic cycle

    Get PDF
    Neospora caninum is one of the main causes of transmissible abortion in cattle. Intraspecific variations in virulence have been widely shown among N. caninum isolates. However, the molecular basis governing such variability have not been elucidated to date. In this study label free LC-MS/MS was used to investigate proteome differences between the high virulence isolate Nc-Spain7 and the low virulence isolate Nc-Spain1H throughout the tachyzoite lytic cycle. The results showed greater differences in the abundance of proteins at invasion and egress with 77 and 62 proteins, respectively. During parasite replication, only 19 proteins were differentially abundant between isolates. The microneme protein repertoire involved in parasite invasion and egress was more abundant in the Nc-Spain1H isolate, which displays a lower invasion rate. Rhoptry and dense granule proteins, proteins related to metabolism and stress responses also showed differential abundances between isolates. Comparative RNA-Seq analyses during tachyzoite egress were also performed, revealing an expression profile of genes associated with the bradyzoite stage in the low virulence Nc-Spain1H isolate. The differences in proteome and RNA expression profiles between these two isolates reveal interesting insights into likely mechanisms involved in specific phenotypic traits and virulence in N. caninum. Significance The molecular basis that governs biological variability in N. caninum and the pathogenesis of neosporosis has not been well-established yet. This is the first study in which high throughput technology of LC-MS/MS and RNA-Seq is used to investigate differences in the proteome and transcriptome between two well-characterized isolates. Both isolates displayed different proteomes throughout the lytic cycle and the transcriptomes also showed marked variations but were inconsistent with the proteome results. However, both datasets identified a pre-bradyzoite status of the low virulence isolate Nc-Spain1H. This study reveals interesting insights into likely mechanisms involved in virulence in N. caninum and shed light on a subset of proteins that are potentially involved in the pathogenesis of this parasite

    A large-scale proteogenomics study of apicomplexan pathogens-Toxoplasma gondii and Neospora caninum

    Get PDF
    Proteomics data can supplement genome annotation efforts, for example being used to confirm gene models or correct gene annotation errors. Here, we present a large‐scale proteogenomics study of two important apicomplexan pathogens: Toxoplasma gondii and Neospora caninum. We queried proteomics data against a panel of official and alternate gene models generated directly from RNASeq data, using several newly generated and some previously published MS datasets for this meta‐analysis. We identified a total of 201 996 and 39 953 peptide‐spectrum matches for T. gondii and N. caninum, respectively, at a 1% peptide FDR threshold. This equated to the identification of 30 494 distinct peptide sequences and 2921 proteins (matches to official gene models) for T. gondii, and 8911 peptides/1273 proteins for N. caninum following stringent protein‐level thresholding. We have also identified 289 and 140 loci for T. gondii and N. caninum, respectively, which mapped to RNA‐Seq‐derived gene models used in our analysis and apparently absent from the official annotation (release 10 from EuPathDB) of these species. We present several examples in our study where the RNA‐Seq evidence can help in correction of the current gene model and can help in discovery of potential new genes

    Proteomic Characterization of Host-Pathogen Interactions during Bovine Trophoblast Cell Line Infection by

    Get PDF
    Despite the importance of bovine neosporosis, relevant knowledge gaps remain concerning the pathogenic mechanisms of . Infection of the placenta is a crucial event in the pathogenesis of the disease; however, very little is known about the relation of the parasite with this target organ. Recent studies have shown that isolates with important variations in virulence also show different interactions with the bovine trophoblast cell line F3 in terms of proliferative capacity and transcriptome host cell modulation. Herein, we used the same model of infection to study the interaction of with these target cells at the proteomic level using LC-MS/MS over the course of the parasite lytic cycle. We also analysed the proteome differences between high- (Nc-Spain7) and low-virulence (Nc-Spain1H) isolates. The results showed that mitochondrial processes and metabolism were the main points of -host interactions. Interestingly, Nc-Spain1H infection showed a higher level of influence on the host cell proteome than Nc-Spain7 infection

    Going places

    Get PDF
    Journeys. We all make them. Often they take us to exotic places. Sometimes they take us even further. They might take us through time. Or they might take us into a new way of life. There are times too, when we go all over the world and back again only to find that home is, after all, where it’s all happening. This book contains stories about many different types of journey. We hope you will enjoy travelling into it and finding a world that suits you

    An open-format enteroid culture system for interrogation of interactions between Toxoplasma gondii and the intestinal epithelium.

    Get PDF
    When transmitted through the oral route, Toxoplasma gondii first interacts with its host at the small intestinal epithelium. This interaction is crucial to controlling initial invasion and replication, as well as shaping the quality of the systemic immune response. It is therefore an attractive target for the design of novel vaccines and adjuvants. However, due to a lack of tractable infection models, we understand surprisingly little about the molecular pathways that govern this interaction. The in vitro culture of small intestinal epithelium as 3D enteroids shows great promise for modeling the epithelial response to infection. However, the enclosed luminal space makes the application of infectious agents to the apical epithelial surface challenging. Here, we have developed three novel enteroid-based techniques for modeling T. gondii infection. In particular, we have adapted enteroid culture protocols to generate collagen-supported epithelial sheets with an exposed apical surface. These cultures retain epithelial polarization, and the presence of fully differentiated epithelial cell populations. They are susceptible to infection with, and support replication of, T. gondii. Using quantitative label-free mass spectrometry, we show that T. gondii infection of the enteroid epithelium is associated with up-regulation of proteins associated with cholesterol metabolism, extracellular exosomes, intermicrovillar adhesion, and cell junctions. Inhibition of host cholesterol and isoprenoid biosynthesis with Atorvastatin resulted in a reduction in parasite load only at higher doses, indicating that de novo synthesis may support, but is not required for, parasite replication. These novel models therefore offer tractable tools for investigating how interactions between T. gondii and the host intestinal epithelium influence the course of infection

    Microstructural Imaging in Temporal Lobe Epilepsy: Diffusion Imaging Changes Relate to Reduced Neurite Density

    Get PDF
    Purpose: Previous imaging studies in patients with refractory temporal lobe epilepsy (TLE) have examined the spatial distribution of changes in imaging parameters such as diffusion tensor imaging (DTI) metrics and cortical thickness. Multi-compartment models offer greater specificity with parameters more directly related to known changes in TLE such as altered neuronal density and myelination. We studied the spatial distribution of conventional and novel metrics including neurite density derived from NODDI (Neurite Orientation Dispersion and Density Imaging) and myelin water fraction (MWF) derived from mcDESPOT (Multi-Compartment Driven Equilibrium Single Pulse Observation of T1/T2)] to infer the underlying neurobiology of changes in conventional metrics. / Methods: 20 patients with TLE and 20 matched controls underwent magnetic resonance imaging including a volumetric T1-weighted sequence, multi-shell diffusion from which DTI and NODDI metrics were derived and a protocol suitable for mcDESPOT fitting. Models of the grey matter-white matter and grey matter-CSF surfaces were automatically generated from the T1-weighted MRI. Conventional diffusion and novel metrics of neurite density and MWF were sampled from intracortical grey matter and subcortical white matter surfaces and cortical thickness was measured. / Results: In intracortical grey matter, diffusivity was increased in the ipsilateral temporal and frontopolar cortices with more restricted areas of reduced neurite density. Diffusivity increases were largely related to reductions in neurite density, and to a lesser extent CSF partial volume effects, but not MWF. In subcortical white matter, widespread bilateral reductions in fractional anisotropy and increases in radial diffusivity were seen. These were primarily related to reduced neurite density, with an additional relationship to reduced MWF in the temporal pole and anterolateral temporal neocortex. Changes were greater with increasing epilepsy duration. Bilaterally reduced cortical thickness in the mesial temporal lobe and centroparietal cortices was unrelated to neurite density and MWF. / Conclusions: Diffusivity changes in grey and white matter are primarily related to reduced neurite density with an additional relationship to reduced MWF in the temporal pole. Neurite density may represent a more sensitive and specific biomarker of progressive neuronal damage in refractory TLE that deserves further study
    corecore