84 research outputs found
Links between floods and other water issues in the himalayan and tibetan plateau region
The Himalayan and Tibetan region and adjacent plains are highly flood-prone, causing massive damage in both urban and rural areas. While this is well known and moderately well studied, we contend that floods are connected to other water issues in this region and hence should not be analyzed in isolation. We use influence diagrams to present initial hypotheses concerning possible cause-effect links between key variables of the wider system. The links emphasize a need to take a much broader than usual view to minimize the unintended consequences of governance interventions, and to avoid worsening already highly dangerous situations. The governance challenges revealed by such a view are immense, but the large-scale framework presented here indicates a need for a collaborative, cross-sectoral approach to adaptive governance. While some of what is suggested in this paper is geopolitically unrealizable at the moment, the discussion is offered as a guide to future planning
A study of soil formation rates using 10Be in the wet-dry tropics of northern Australia
A catchment level study to obtain soil formation rates using beryllium-10 (10Be) tracers has been undertaken in the Daly River Basin in the wet-dry tropics of northern Australia. Three soil cores have been collected to bedrock, with depths ranging from
Effect of tensor couplings in a relativistic Hartree approach for finite nuclei
The relativistic Hartree approach describing the bound states of both
nucleons and anti-nucleons in finite nuclei has been extended to include tensor
couplings for the - and -meson. After readjusting the parameters
of the model to the properties of spherical nuclei, the effect of
tensor-coupling terms rises the spin-orbit force by a factor of 2, while a
large effective nucleon mass sustains. The overall
nucleon spectra of shell-model states are improved evidently. The predicted
anti-nucleon spectra in the vacuum are deepened about 20 -- 30 MeV.Comment: 31 pages, 4 postscript figures include
Long-Range Forces of QCD
We consider the scattering of two color dipoles (e.g., heavy quarkonium
states) at low energy - a QCD analog of Van der Waals interaction. Even though
the couplings of the dipoles to the gluon field can be described in
perturbation theory, which leads to the potential proportional to
(N_c^2-1)/R^{7}, at large distances R the interaction becomes totally
non-perturbative. Low-energy QCD theorems are used to evaluate the leading
long-distance contribution \sim (N_f^2-1)/(11N_c - 2N_f)^2 R^{-5/2} exp(-2 \mu
R) (\mu is the Goldstone boson mass), which is shown to arise from the
correlated two-boson exchange. The sum rule which relates the overall strength
of the interaction to the energy density of QCD vacuum is derived.
Surprisingly, we find that when the size of the dipoles shrinks to zero (the
heavy quark limit in the case of quarkonia), the non-perturbative part of the
interaction vanishes more slowly than the perturbative part as a consequence of
scale anomaly. As an application, we evaluate elastic \pi J/\psi and \pi J/\psi
\to \pi \psi' cross sections.Comment: 16pages, 9 eps figures; discussion extended, 2 new references added,
to appear in Phys.Rev.
Evidence for virtual Compton scattering from the proton
In virtual Compton scattering an electron is scattered off a nucleon such that the nucleon emits a photon. We show that these events can be selected experimentally, and present the first evidence for virtual Compton scattering from the proton in data obtained at the Stanford Linear Accelerator Center. The angular and energy dependence of the data is well described by a calculation that includes the coherent sum of electron and proton radiation
Whole-genome sequencing reveals host factors underlying critical COVID-19
Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
Geomorphic histories for river and catchment management
10.1098/rsta.2011.0599Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences37019662240-226
Caesium-137 in Southeast Asia: Is there enough left for soil erosion and sediment redistribution studies?
10.1016/j.jseaes.2013.08.012Journal of Asian Earth Sciences77108-11
- …