5,144 research outputs found

    A dual modelling of evolving political opinion networks

    Full text link
    We present the result of a dual modeling of opinion network. The model complements the agent-based opinion models by attaching to the social agent (voters) network a political opinion (party) network having its own intrinsic mechanisms of evolution. These two sub-networks form a global network which can be either isolated from or dependent on the external influence. Basically, the evolution of the agent network includes link adding and deleting, the opinion changes influenced by social validation, the political climate, the attractivity of the parties and the interaction between them. The opinion network is initially composed of numerous nodes representing opinions or parties which are located on a one dimensional axis according to their political positions. The mechanism of evolution includes union, splitting, change of position and of attractivity, taken into account the pairwise node interaction decaying with node distance in power law. The global evolution ends in a stable distribution of the social agents over a quasi-stable and fluctuating stationary number of remaining parties. Empirical study on the lifetime distribution of numerous parties and vote results is carried out to verify numerical results

    Type Ia Supernovae, Evolution, and the Cosmological Constant

    Get PDF
    We explore the possible role of evolution in the analysis of data on SNe Ia at cosmological distances. First, using a variety of simple sleuthing techniques, we find evidence that the properties of the high and low redshift SNe Ia observed so far differ from one another. Next, we examine the effects of including simple phenomenological models for evolution in the analysis. The result is that cosmological models and evolution are highly degenerate with one another, so that the incorporation of even very simple models for evolution makes it virtually impossible to pin down the values of ΩM\Omega_M and ΩΛ\Omega_\Lambda, the density parameters for nonrelativistic matter and for the cosmological constant, respectively. Moreover, we show that if SNe Ia evolve with time, but evolution is neglected in analyzing data, then, given enough SNe Ia, the analysis hones in on values of ΩM\Omega_M and ΩΛ\Omega_\Lambda which are incorrect. Using Bayesian methods, we show that the probability that the cosmological constant is nonzero (rather than zero) is unchanged by the SNe Ia data when one accounts for the possibility of evolution, provided that we do not discriminate among open, closed and flat cosmologies a priori. The case for nonzero cosmological constant is stronger if the Universe is presumed to be flat, but still depends sensitively on the degree to which the peak luminosities of SNe Ia evolve as a function of redshift. The estimated value of H0H_0, however, is only negligibly affected by accounting for possible evolution.Comment: 45 pages, 15 figures; accepted for publication in The Astrophysical Journal. Minor revisions and clarifications made including addition of recent reference

    Anomalous Spin Polarization of GaAs Two-Dimensional Hole Systems

    Full text link
    We report measurements and calculations of the spin-subband depopulation, induced by a parallel magnetic field, of dilute GaAs two-dimensional (2D) hole systems. The results reveal that the shape of the confining potential dramatically affects the values of in-plane magnetic field at which the upper spin subband is depopulated. Most surprisingly, unlike 2D electron systems, the carrier-carrier interaction in 2D hole systems does not significantly enhance the spin susceptibility. We interpret our findings using a multipole expansion of the spin density matrix, and suggest that the suppression of the enhancement is related to the holes' band structure and effective spin j=3/2.Comment: 6 pages, 4 figures, substantially extended discussion of result

    Negative differential Rashba effect in two-dimensional hole systems

    Full text link
    We demonstrate experimentally and theoretically that two-dimensional (2D) heavy hole systems in single heterostructures exhibit a \emph{decrease} in spin-orbit interaction-induced spin splitting with an increase in perpendicular electric field. Using front and back gates, we measure the spin splitting as a function of applied electric field while keeping the density constant. Our results are in contrast to the more familiar case of 2D electrons where spin splitting increases with electric field.Comment: 3 pages, 3 figures. To appear in AP

    Is your EPL attractive? Classification of publications through download statistics

    Full text link
    Here we consider the download statistics of EPL publications. We find that papers in the journal are characterised by fast accumulations of downloads during the first couple of months after publication, followed by slower rates thereafter, behaviour which can be represented by a model with predictive power. We also find that individual papers can be classified in various ways, allowing us to compare categories for open-access and non-open-access papers. For example, for the latter publications, which comprise the bulk of EPL papers, a small proportion (2%) display intense bursts of download activity, possibly following an extended period of less remarkable behaviour. About 18% have an especially high degree of attractiveness over and above what is typical for the journal. One can also classify the ageing of attractiveness by examining download half-lives. Approximately 18% have strong interest initially, waning in time. A further 20% exhibit "delayed recognition" with relatively late spurs in download activity. Although open-access papers enjoy more downloads on average, the proportions falling into each category are similar.Comment: 6 pages, 8 figures, accepted for publication in EP
    • …
    corecore