31 research outputs found

    Angular momentum transport in convectively unstable shear flows

    Full text link
    Angular momentum transport owing to hydrodynamic turbulent convection is studied using local three dimensional numerical simulations employing the shearing box approximation. We determine the turbulent viscosity from non-rotating runs over a range of values of the shear parameter and use a simple analytical model in order to extract the non-diffusive contribution (Lambda-effect) to the stress in runs where rotation is included. Our results suggest that the turbulent viscosity is of the order of the mixing length estimate and weakly affected by rotation. The Lambda-effect is non-zero and a factor of 2-4 smaller than the turbulent viscosity in the slow rotation regime. We demonstrate that for Keplerian shear, the angular momentum transport can change sign and be outward when the rotation period is greater than the turnover time, i.e. when the Coriolis number is below unity. This result seems to be relatively independent of the value of the Rayleigh number.Comment: 10 pages, 12 figures, published version. Version with higher resolution figures can be found at http://www.helsinki.fi/~kapyla/publ.htm

    Turbulent Mixing in the Surface Layers of Accreting Neutron Stars

    Full text link
    During accretion a neutron star (NS) is spun up as angular momentum is transported through its surface layers. We study the resulting differentially rotating profile, focusing on the impact this has for type I X-ray bursts. The predominant viscosity is likely provided by the Tayler-Spruit dynamo. The radial and azimuthal magnetic field components have strengths of ~10^5 G and ~10^10 G, respectively. This leads to nearly uniform rotation at the depths of interest for X-ray bursts. A remaining small shear transmits the accreted angular momentum inward to the NS interior. Though this shear gives little viscous heating, it can trigger turbulent mixing. Detailed simulations will be required to fully understand the consequences of mixing, but our models illustrate some general features. Mixing has the greatest impact when the buoyancy at the compositional discontinuity between accreted matter and ashes is overcome. This occurs at high accretion rates, at low spin frequencies, or may depend on the ashes from the previous burst. We then find two new regimes of burning. The first is ignition in a layer containing a mixture of heavier elements from the ashes. If ignition occurs at the base of the mixed layer, recurrence times as short as ~5-30 minutes are possible. This may explain the short recurrence time of some bursts, but incomplete burning is still needed to explain these bursts' energetics. When mixing is sufficiently strong, a second regime is found where accreted helium mixes deep enough to burn stably, quenching X-ray bursts. We speculate that the observed change in X-ray burst properties near one-tenth the Eddington accretion rate is from this mechanism. The carbon-rich material produced by stable helium burning would be important for triggering and fueling superbursts. (abridged)Comment: Accepted for publication in The Astrophysical Journal, 16 pages, 15 figure

    Observation of an unusual field dependent slow magnetic relaxation and two distinct transitions in a family of new complexes

    Full text link
    An unusual field dependent slow magnetic relaxation and two distinct transitions were observed in a family of new rare earth-transition metal complexes, [Ln (bipy) (H2_{2}O)4_{4} M(CN)6_{6}] ⋅\cdot 1.5 (bipy) ⋅ \cdot 4H2_{2}O (bipy = 2,2'-bipyridine; Ln = Gd3+^{3+},Y3+^{3+}; M = Fe3+ ^{3+}, Co3+^{3+}). The novel magnetic relaxation, which is quite different from those in normal spin glasses and superparamagnets but very resembles qualitatively those in single-molecule magnet Mn12_{12}-Ac even if they possess different structures, might be attributed to the presence of frustration that is incrementally unveiled by the external magnetic field. The two distinct transitions in [GdFe] were presumed from DC and AC susceptibility as well as heat capacity measurements.Comment: Revtex, 6 figure

    Presupernova Evolution of Rotating Massive Stars I: Numerical Method and Evolution of the Internal Stellar Structure

    Full text link
    The evolution of rotating stars with zero-age main sequence (ZAMS) masses in the range 8 to 25 M_sun is followed through all stages of stable evolution. The initial angular momentum is chosen such that the star's equatorial rotational velocity on the ZAMS ranges from zero to ~ 70 % of break-up. Redistribution of angular momentum and chemical species are then followed as a consequence of rotationally induced circulation and instablities. The effects of the centrifugal force on the stellar structure are included. Uncertain mixing efficiencies are gauged by observations. We find, as noted in previous work, that rotation increases the helium core masses and enriches the stellar envelopes with products of hydrogen burning. We determine, for the first time, the angular momentum distribution in typical presupernova stars along with their detailed chemical structure. Angular momentum loss due to (non-magnetic) stellar winds and the redistribution of angular momentum during core hydrogen burning are of crucial importance for the specific angular momentum of the core. Neglecting magnetic fields, we find angular momentum transport from the core to the envelope to be unimportant after core helium burning. We obtain specific angular momenta for the iron core and overlaying material of 1E16...1E17 erg s. These values are insensitive to the initial angular momentum. They are small enough to avoid triaxial deformations of the iron core before it collapses, but could lead to neutron stars which rotate close to break-up. They are also in the range required for the collapsar model of gamma-ray bursts. The apparent discrepancy with the measured rotation rates of young pulsars is discussed.Comment: 62 pages, including 7 tables and 19 figures. Accepted by Ap

    Loss of the Orphan Nuclear Receptor SHP Is More Pronounced in Fibrolamellar Carcinoma than in Typical Hepatocellular Carcinoma

    Get PDF
    Hepatocellular carcinoma (HCC) remains a major problem in oncology. The molecular mechanisms which underlie its pathogenesis are poorly understood. Recently the Small Heterodimer Partner (SHP), an orphan nuclear receptor, was suggested to be involved as a tumor suppressor in hepatocellular carcinoma development. To date, there are no such studies regarding fibrolamellar carcinoma, a less common variant of HCC, which usually affects young people and displays distinct morphological features. The aim of our project was to evaluate the SHP levels in typical and fibrolamellar hepatocellular carcinoma with respect to the levels of one of the cell cycle regulators, cyclin D1. We assessed the immunoreactivity levels of SHP and cyclin D1 in 48 typical hepatocellular carcinomas, 9 tumors representing the fibrolamellar variant, 29 non malignant liver tissues and 7 macroregenerative nodules. We detected significantly lower SHP immunoreactivity in hepatocellular carcinoma when compared to non malignant liver tissue. Moreover, we found that SHP immunoreactivity is reduced in fibrolamellar carcinoma when compared to typical hepatocellular carcinoma. We also found that SHP is more commonly lost in HCC which arises in the liver with steatosis. The comparison between the cyclin D1 and SHP expression revealed the negative correlation between these proteins in the high grade HCC. Our results indicate that the impact of loss of SHP protein may be even more pronounced in fibrolamellar carcinoma than in a typical form of HCC. Further investigation of mechanisms through which the loss of SHP function may influence HCC formation may provide important information in order to design more effective HCC therapy

    The effect of undecanones and their derivatives on tumor angiogenesis and VEGF content

    No full text
    The in vivo effects of some derivatives of aliphatic ketones (2-undecanone, 3-undecanone, 4-undecanone and their derivatives) on L-l sarcoma tumor angiogenesis and VEGF content were studied in Balb/c mice. Mice that inhaled 10% solution of 3-undecanone(3-on) or 1% solution of 2-undecanone propylene acetal (Acpr2) for 3 days after tumor cells implantation, presented lower neovascular response measured by tumor-induced cutaneous angiogenesis test (TIA) and lower tumor VEGF content in 5-days tumors, than non-inhaled controls. Other substances presented various effects on tumor VEGF concentration and angiogenesis. Histological examination of lesions collected from mice inhaled Acpr2, or non-inhaled controls, revealed small diffused areas of necrosis in the former group. In both groups, slight to moderate inflammatory infiltrations were seen at the tumor's margin. In Acpr2 group, there were less small blood vessels at tumor's margin than in the control group
    corecore