40 research outputs found

    Bradykinin B2 receptor is essential to running-induced cell proliferation in the adult mouse hippocampus

    Get PDF
    Physical exercise is a strong external effector that induces precursor cell proliferation in the adult mouse hippocampus. Research into mechanisms has focused on central changes within the hippocampus and we have established that serotonin is the signaling factor that transduces physical activity into adult neurogenesis. Less focus has been given on potential peripheral signals that may cause pro-mitotic running effects. Vasoactive kinin peptides are important for blood pressure regulation and inflammatory processes to maintain cardiovascular homeostasis. Acting via the two receptors termed B1 (B1R) and B2R, the peptides also function in the brain. In particular, studies attribute B2R a role in cell proliferation and differentiation into neurons in vitro. Here, we determined B1R and B2R mRNA expression levels in the adult mouse hippocampus and prefrontal cortex in vivo, and in response to running exercise. Using mice depleted in either or both receptors, B1-knockout (KO), B2KO and B1/2KO we observed changes in running performance overnight and in running distances. However, voluntary exercise led to the known pro-mitotic effect in the dentate gyrus of B1KO mice while it was attenuated in B2KO accompanied by an increase in microglia cells. Our data identify B2R as an important factor in running-induced precursor cell proliferation

    Exercise during pregnancy protects adult mouse offspring from diet-induced obesity

    Get PDF
    BACKGROUND: Physical exercise induces positive alterations in gene expression involved in the metabolism of obesity. Maternal exercise provokes adaptations soon after birth in the offspring. Here, we investigated whether adult mouse offspring of swim-trained mothers is protected against the development of the deleterious effects of high fat diet (HFD). METHODS: Our study comprises two parts. First, female C57BL/6 mice were divided into one sedentary and one swim-trained group (before and during pregnancy, n = 18). In the second part, adult offspring (n = 12) of trained and sedentary mothers was challenged to HFD for 16 weeks. Notably, most of the analysis was done in male offspring. RESULTS: Our results demonstrate that maternal exercise has several beneficial effects on the mouse offspring and protects them from the deleterious effects of HFD in the adult. Specifically, swimming during pregnancy leads to lower birth weight in offspring through 2 months of age. When subjected to HFD for 4 month in the adulthood, our study presents novel data on the male offspring's metabolism of trained mothers. The offspring gained less weight, which was accompanied by less body fat, and they used more calories during daytime compared with offspring of sedentary mothers. Furthermore, we observed increased adiponectin expression in skeletal muscle, which was accompanied by decreased leptin levels and increased insulin sensitivity. Decreased interleukin-6 expression and increased peptide PYY levels were observed in sera of adult offspring of mothers that swam during pregnancy. CONCLUSIONS: Our results point to the conclusion that maternal exercise is beneficial to protect the offspring from developing obesity, which could be important for succeeding generations as well

    Caloric restriction is more efficient than physical exercise to protect from cisplatin nephrotoxicity via PPAR-alpha activation

    Get PDF
    The antineoplastic drug cisplatin promotes renal injury, which limits its use. Protocols that reduce renal cisplatin toxicity will allow higher doses to be used in cisplatin treatment. Here, we compare physical exercise and caloric restriction (CR) as protocols to reduce cisplatin renal injury in mice. Male C57BL/6 were divided into four groups: Control, cisplatin, exercise + cisplatin, and 30% CR + cisplatin. Animals were injected with a single dose of cisplatin (20 mg/kg i.p.) and sacrificed 96 h after injection. Quantitative real time PCR, histological analyses, immunohistochemistry, and biochemical measurements were performed to investigate renal injury, necrosis, apoptosis, and inflammatory mechanisms. Both protocols protected against cisplatin renal injury, but CR was more effective in reducing uraemia and renal necrosis. The CR + Cisplatin group exhibited reduced serum IL-1{beta} and TNF-{alpha} levels. No differences were noted in the renal mRNA expression of cytokines. Both interventions reduced apoptosis, but only the CR + Cisplatin group decreased TNFR2 protein expression. PPAR-{alpha} was activated in mice after CR. An antagonist of PPAR-{alpha} blocked the protective effect of CR. Both interventions attenuated the nephrotoxicity caused by cisplatin injection, but CR + Cisplatin showed a better response by modulating TNFR2. Moreover, part of the CR benefit depends on PPAR-{alpha} activation

    Ghrelin-induced Food Intake, but not GH Secretion, Requires the Expression of the GH Receptor in the Brain of Male Mice

    Get PDF
    Ghrelin stimulates both GH secretion and food intake. The orexigenic action of ghrelin is mainly mediated by neurons that coexpress agouti-related protein (AgRP) and neuropeptide Y (NPY) in the arcuate nucleus of the hypothalamus (ARH). GH also stimulates food intake and, importantly, ARHAgRP/NPY neurons express GH receptor (GHR). Thus, ghrelin-induced GH secretion may contribute to the orexigenic effect of ghrelin. Here, we investigated the response to ghrelin in male mice carrying GHR ablation specifically in neurons (brain GHR knockout [KO] mice) or exclusively in ARHAgRP/NPY neurons (AgRP GHR KO mice). Although brain GHR KO mice showed normal ghrelin-induced increase in plasma GH levels, these mutants lacked the expected orexigenic response to ghrelin. Additionally, brain GHR KO mice displayed reduced hypothalamic levels of Npy and Ghsr mRNA and did not elicit ghrelin-induced c-Fos expression in the ARH. Furthermore, brain GHR KO mice exhibited a prominent reduction in AgRP fiber density in the ARH and paraventricular nucleus of the hypothalamus (PVH). In contrast, AgRP GHR KO mice showed no changes in the hypothalamic Npy and Ghsr mRNAs and conserved ghrelin-induced food intake and c-Fos expression in the ARH. AgRP GHR KO mice displayed a reduced AgRP fiber density (∼16%) in the PVH, but this reduction was less than that observed in brain GHR KO mice (∼61%). Our findings indicate that GHR signaling in the brain is required for the orexigenic effect of ghrelin, independently of GH action on ARHAgRP/NPY neurons.Fil: Wasinski, Frederick. Universidade de Sao Paulo; BrasilFil: Barrile, Franco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Multidisciplinario de Biología Celular. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Multidisciplinario de Biología Celular. Universidad Nacional de La Plata. Instituto Multidisciplinario de Biología Celular; ArgentinaFil: Pedroso, João A. B.. Universidade de Sao Paulo; BrasilFil: Quaresma, Paula G. F.. Universidade de Sao Paulo; BrasilFil: Dos Santos, Willian O.. Universidade de Sao Paulo; BrasilFil: List, Edward O.. Ohio University; Estados UnidosFil: Kopchick, John J.. Ohio University; Estados UnidosFil: Perelló, Mario. Multidisciplinary Institute Of Cell Biology; ArgentinaFil: Donato, Jose. Universidade de Sao Paulo; Brasi

    Angiotensin-converting enzyme inhibitor protects against cisplatin nephrotoxicity by modulating kinin B1 receptor expression and aminopeptidase P activity in mice

    Get PDF
    Cisplatin is a highly effective chemotherapeutic agent. However, its use is limited by nephrotoxicity. Enalapril is an angiotensin I-converting enzyme inhibitor used for the treatment of hypertension, mainly through the reduction of angiotensin II formation, but also through the increase of kinins half-life. Kinin B1 receptor is associated with inflammation and migration of immune cells into the injured tissue. We have previously shown that the deletion or blockage of kinin B1 and B2 receptors can attenuate cisplatin nephrotoxicity. In this study, we tested enalapril treatment as a tool to prevent cisplatin nephrotoxicity. Male C57Bl/6 mice were divided into 3 groups: control group; cisplatin (20 mg/kg i.p) group; and enalapril (1.5 mg;kg i.p) + cisplatin group. The animals were treated with a single dose of cisplatin and euthanized after 96 h. Enalapril was able to attenuate cisplatin-induced increase in creatinine and urea, and to reduce tubular injury and upregulation of apoptosis-related genes, as well as inflammatory cytokines in circulation and kidney. The upregulation of B1 receptor was blocked in enalapril + cisplatin group. Carboxypeptidase M expression, which generates B1 receptor agonists, is blunted by cisplatin + enalapril treatment. The activity of aminopeptidase P, a secondary key enzyme able to degrade kinins, is restored by enalapril treatment. These findings were confirmed in mouse renal epithelial tubular cells, in which enalaprilat (5 μM) was capable of decreasing tubular injury and inflammatory markers. We treated mouse renal epithelial tubular cells with cisplatin (100 μM), cisplatin+enalaprilat and cisplatin+enalaprilat+apstatin (10 μM). The results showed that cisplatin alone decreases cell viability, cisplatin plus enalaprilat is able to restore cell viability, and cisplatin plus enalaprilat and apstatin decreases cell viability. In the present study, we demonstrated that enalapril prevents cisplatin nephrotoxicity mainly by preventing the upregulation of B1 receptor and carboxypeptidase M and the increased concentrations of kinin peptides through aminopeptidase activity restoration

    Deletion of kinin B2 receptor alters muscle metabolism and exercise performance

    Get PDF
    Metabolic syndrome is a cluster of metabolic risk factors such as obesity, diabetes and cardiovascular diseases. Mitochondria is the main site of ATP production and its dysfunction leads to decreased oxidative phosphorylation, resulting in lipid accumulation and insulin resistance. Our group has demonstrated that kinins can modulate glucose and lipid metabolism as well as skeletal muscle mass. By using B2 receptor knockout mice (B2R-/-) we investigated whether kinin action affects weight gain and physical performance of the animals. Our results show that B2R-/- mice are resistant to high fat diet-induced obesity, have higher glucose tolerance as well as increased mitochondrial mass. These features are accompanied by higher energy expenditure and a lower feed efficiency associated with an increase in the proportion of type I fibers and intermediary fibers characterized by higher mitochondrial content and increased expression of genes related to oxidative metabolism. Additionally, the increased percentage of oxidative skeletal muscle fibers and mitochondrial apparatus in B2R-/- mice is coupled with a higher aerobic exercise performance. Taken together, our data give support to the involvement of kinins in skeletal muscle fiber type distribution and muscle metabolism, which ultimately protects against fat-induced obesity and improves aerobic exercise performance

    Changes in Glucose and Glutamine Lymphocyte Metabolisms Induced by Type I Interferon α

    Get PDF
    In lymphocytes (LY), the well-documented antiproliferative effects of IFN-α are associated with inhibition of protein synthesis, decreased amino acid incorporation, and cell cycle arrest. However, the effects of this cytokine on the metabolism of glucose and glutamine in these cells have not been well investigated. Thus, mesenteric and spleen LY of male Wistar rats were cultured in the presence or absence of IFN-α, and the changes on glucose and glutamine metabolisms were investigated. The reduced proliferation of mesenteric LY was accompanied by a reduction in glucose total consumption (35%), aerobic glucose metabolism (55%), maximal activity of glucose-6-phosphate dehydrogenase (49%), citrate synthase activity (34%), total glutamine consumption (30%), aerobic glutamine consumption (20.3%) and glutaminase activity (56%). In LY isolated from spleen, IFNα also reduced the proliferation and impaired metabolism. These data demonstrate that in LY, the antiproliferative effects of IFNα are associated with a reduction in glucose and glutamine metabolisms

    Caloric Restriction Is More Efficient than Physical Exercise to Protect from Cisplatin Nephrotoxicity via PPAR-Alpha Activation

    Get PDF
    The antineoplastic drug cisplatin promotes renal injury, which limits its use. Protocols that reduce renal cisplatin toxicity will allow higher doses to be used in cisplatin treatment. Here, we compare physical exercise and caloric restriction (CR) as protocols to reduce cisplatin renal injury in mice. Male C57BL/6 were divided into four groups: Control, cisplatin, exercise + cisplatin, and 30% CR + cisplatin. Animals were injected with a single dose of cisplatin (20 mg/kg i.p.) and sacrificed 96 h after injection. Quantitative real time PCR, histological analyses, immunohistochemistry, and biochemical measurements were performed to investigate renal injury, necrosis, apoptosis, and inflammatory mechanisms. Both protocols protected against cisplatin renal injury, but CR was more effective in reducing uraemia and renal necrosis. The CR + Cisplatin group exhibited reduced serum IL-1 beta and INF-alpha levels. No differences were noted in the renal mRNA expression of cytokines. Both interventions reduced apoptosis, but only the CR + Cisplatin group decreased TNFR2 protein expression. PPAR-ci was activated in mice after CR. An antagonist of PPAR-alpha blocked the protective effect of CR. Both interventions attenuated the nephrotoxicity caused by cisplatin injection, but CR + Cisplatin showed a better response by modulating TNFR2. Moreover, part of the CR benefit depends on PPAR-alpha activation.FAPESP (Fundacao de Apoio a Pesquisa do Estado de Sao Paulo)CAPES/DAADUniv Fed Sao Paulo, Dept Biofis, Sao Paulo, BrazilUniv Fed Sao Paulo, Dept Med, Disciplina Nefrol, Sao Paulo, BrazilUniv Sao Paulo, Inst Ciencias Biomed, Dept Immunol, Sao Paulo, BrazilUniv Sao Paulo, Dept Clin Med, Sao Paulo, BrazilUniv Fed Pelotas, Escola Nutr, Dept Nutr, Pelotas, BrazilMax Delbruck Ctr Mol Med, Berlin, GermanyUniv Fed Sao Paulo, Dept Biofis, Sao Paulo, BrazilUniv Fed Sao Paulo, Dept Med, Disciplina Nefrol, Sao Paulo, BrazilFAPESP: 2013/06207-6FAPESP: 2015/20082-7CAPES/DAAD: 427/15Web of Scienc

    Carbamazepine inhibits angiotensin I-converting enzyme, linking it to the pathogenesis of temporal lobe epilepsy

    Get PDF
    We find that a common mutation that increases angiotensin I-converting enzyme activity occurs with higher frequency in male patients suffering from refractory temporal lobe epilepsy. However, in their brains, the activity of the enzyme is downregulated. As an explanation, we surprisingly find that carbamazepine, commonly used to treat epilepsy, is an inhibitor of the enzyme, thus providing a direct link between epilepsy and the renin–angiotensin and kallikrein–kinin systems
    corecore