994 research outputs found

    Charge transfer reactions in nematic liquid crystals

    Full text link
    Ultrafast transient absorption studies of intramolecular photoinduced charge separation and thermal charge recombination were carried out on a molecule consisting of a 4-(N-pyrrolidino)naphthalene-1,8-imide donor (PNI) covalently attached to a pyromellitimide acceptor (PI) dissolved in the liquid crystal 4{prime}-(n-pentyl)-4-cyanobiphenyl (5CB). The temperature dependencies of the charge separation and recombination rates were obtained at temperatures above the nematic-isotropic phase transition of 5CB, where ordered microdomains exist and scattering of visible light by these domains is absent. The authors show that excited state charge separation is dominated by molecular reorientation of 5CB perpendicular to the director within the liquid crystal microdomains. They also show that charge recombination is adiabatic and is controlled by the comparatively slow collective reorientation of the liquid crystal microdomains relative to the orientation of PNI{sup +}-PI{sup {minus}}. They also report the results of time resolved electron paramagnetic resonance (TREPR) studies of photoinduced charge separation in a series of supramolecular compounds dissolved in oriented liquid crystal solvents. These studies permit the determination of the radical pair energy levels as the solvent reorganization energy increases from the low temperature crystalline phase, through the soft glass phase, to the nematic phase of the liquid crystal

    Transient two-dimensional electronic spectroscopy: coherent dynamics at arbitrary times along the reaction coordinate

    Get PDF
    Recent advances in two-dimensional electronic spectroscopy (2DES) have enabled identification of fragile quantum coherences in condensed-phase systems near the equilibrium molecular geometry. In general, traditional 2DES cannot measure such coherences associated with photophysical processes that occur at times significantly after the initially prepared state has dephased, such as the evolution of the initial excited state into a charge transfer state. We demonstrate the use of transient two-dimensional electronic spectroscopy (t-2DES) to probe coherences in an electron donor–acceptor dyad consisting of a perylenediimide (PDI) acceptor and a perylene (Per) donor. An actinic pump pulse prepares the lowest excited singlet state of PDI followed by formation of the PDI•––Per•+ ion pair, which is probed at different times following the actinic pulse using 2DES. Analysis of the observed coherences provides information about electronic, vibronic, and vibrational interactions at any time along the reaction coordinate for ion pair formation

    Expression of hypoxia-inducible factor 1α in thyroid carcinomas

    Get PDF
    Hypoxia-inducible factor 1α (HIF-1α) is upregulated by hypoxia and oncogenic signalling in many solid tumours. Its regulation and function in thyroid carcinomas are unknown. We evaluated the regulation of HIF-1α and target gene expression in primary thyroid carcinomas and thyroid carcinoma cell lines (BcPAP, WRO, FTC-133 and 8505c). HIF-1α was not detectable in normal tissue but was expressed in thyroid carcinomas. Dedifferentiated anaplastic tumours (ATCs) exhibited high levels of nuclear HIF-1α staining. The HIF-1 target glucose transporter 1 was expressed to a similar level in all tumour types, whereas carbonic anhydrase-9 was significantly elevated in ATCs. In vitro studies revealed a functionally active HIF-1α pathway in thyroid cells with transcriptional activation observed after graded hypoxia (1% O2, anoxia) or treatment with a hypoxia mimetic cobalt chloride. High basal and hypoxia-induced expression of HIF-1α in FTC-133 cells that harbour a phosphatase and tensin homologue (PTEN) mutation was reduced by introduction of wild-type PTEN. Similarly, pharmacological inhibition of the phosphoinositide 3-kinase (PI3K) pathway using LY294002 inhibited HIF-1α and HIF-1α targets in all cell lines, including those with B-RAF mutations (BcPAP and 8505c). In contrast, the effects of inhibition of the RAF/MEK/extracellular signal-regulated kinase pathway were restricted by environmental condition and B-RAF mutation status. HIF-1 is functionally expressed in thyroid carcinomas and is regulated not only by hypoxia but also via growth factor signalling pathways and, in particular, the PI3K pathway. Given the strong association of HIF-1α with an aggressive disease phenotype and therapeutic resistance, this pathway may be an attractive target for improved therapy in thyroid carcinomas

    Mechanically Stabilized Tetrathiafulvalene Radical Dimers

    Get PDF
    Two donor−acceptor [3]catenanes—composed of a tetracationic molecular square, cyclobis(paraquat-4,4′-biphenylene), as the π-electron deficient ring and either two tetrathiafulvalene (TTF) and 1,5-dioxynaphthalene (DNP) containing macrocycles or two TTF-butadiyne-containing macrocycles as the π-electron rich components—have been investigated in order to study their ability to form TTF radical dimers. It has been proven that the mechanically interlocked nature of the [3]catenanes facilitates the formation of the TTF radical dimers under redox control, allowing an investigation to be performed on these intermolecular interactions in a so-called “molecular flask” under ambient conditions in considerable detail. In addition, it has also been shown that the stability of the TTF radical-cation dimers can be tuned by varying the secondary binding motifs in the [3]catenanes. By replacing the DNP station with a butadiyne group, the distribution of the TTF radical-cation dimer can be changed from 60% to 100%. These findings have been established by several techniques including cyclic voltammetry, spectroelectrochemistry and UV−vis−NIR and EPR spectroscopies, as well as with X-ray diffraction analysis which has provided a range of solid-state crystal structures. The experimental data are also supported by high-level DFT calculations. The results contribute significantly to our fundamental understanding of the interactions within the TTF radical dimers

    Supramolecular Explorations: Exhibiting the Extent of Extended Cationic Cyclophanes

    Get PDF
    Acting as hosts, cationic cyclophanes, consisting of π-electron-poor bipyridinium units, are capable of entering into strong donor–acceptor interactions to form host–guest complexes with various guests when the size and electronic constitution are appropriately matched. A synthetic protocol has been developed that utilizes catalytic quantities of tetrabutylammonium iodide to make a wide variety of cationic pyridinium-based cyclophanes in a quick and easy manner. Members of this class of cationic cyclophanes with  box like geometries, dubbed  Ex n Box m 4+ for short, have been prepared by altering a number of variables: (i)  n , the number of “horizontal”  p -phenylene spacers between adjoining pyridinium units, to modulate the “length” of the cavity; (ii)  m , the number of “vertical”  p -phenylene spacers, to modulate the “width” of the cavity; and (iii) the aromatic linkers, namely, 1,4-di- and 1,3,5-trisubstituted units for the construction of macrocycles ( ExBoxes ) and macrobicycles ( ExCages ), respectively. This Account serves as an exploration of the properties that emerge from these structural modifications of the pyridinium-based hosts, coupled with a call for further investigation into the wealth of properties inherent in this class of compounds. By variation of only the aforementioned components, the role of these cationic receptors covers ground that spans (i) synthetic methodology, (ii) extraction and sequestration, (iii) catalysis, (iv) molecular electronics, (v) physical organic chemistry, and (vi) supramolecular chemistry.  Ex 1 Box 4+ (or simply  ExBox 4+ ) has been shown to be a multipurpose receptor capable of binding a wide range of polycyclic aromatic hydrocarbons (PAHs), while also being a suitable component in switchable mechanically interlocked molecules. Additionally, the electronic properties of some host–guest complexes allow the development of artificial photosystems.  Ex 2 Box 4+ boasts the ability to bind both π-electron-rich and -poor aromatic guests in different binding sites located within the same cavity.  ExBox 2 4+ forms complexes with C 60 in which discrete arrays of aligned fullerenes result in single cocrystals, leading to improved material conductivities. When the substitution pattern of the  Ex n Box 4+ series is changed to 1,3,5-trisubstituted benzenoid cores, the hexacationic  cage like compound, termed  ExCage 6+ , exhibits different kinetics of complexation with guests of varying sizes—a veritable playground for physical organic chemists. The organization of functionality with respect to structure becomes valuable as the number of analogues continues to grow. With each of these minor structural modifications, a wealth of properties emerge, begging the question as to what discoveries await and what properties will be realized with the continued exploration of this area of supramolecular chemistry based on a unique class of receptor molecules

    Emerging Pharmacotherapy for Relapsed or Refractory Hodgkin’s Lymphoma: Focus on Brentuximab Vedotin

    Get PDF
    Hodgkins’ lymphoma (HL) which has relapsed post or is refractory to autologous bone marrow transplant presents an ongoing treatment challenge. Development of monoclonal antibodies (mAb) for the treatment of HL has aimed to replicate the success of mAb therapy in the treatment on Non Hodgkins Lymphoma. The identification of CD30 as a potential target for treatment has led to the development of a new antibody-drug conjugate, brentuximab vedotin (SGN-35), which conjugates monomethyl auristatin E to an anti-CD30 antibody to deliver targeted toxicity to the malignant Reed Sternberg cells of HL. This review describes CD30 as an antibody target, and focuses on the antibody-drug conjugate brentuximab vedotin, including current knowledge of the mechanism of action, preclinical, clinical and pharmacokinetic data available for Brentuximab Vedotin

    Formation and electronic structure of an atypical Cu A site

    Get PDF
    PmoD, a recently discovered protein from methane-oxidizing bacteria, forms a homodimer with a dicopper CuA center at the dimer interface. Although the optical and electron paramagnetic resonance (EPR) spectroscopic signatures of the PmoD CuA bear similarities to those of canonical CuA sites, there are also some puzzling differences. Here we have characterized the rapid formation (seconds) and slow decay (hours) of this homodimeric CuA site to two mononuclear Cu2+ sites, as well as its electronic and geometric structure, using stopped-flow optical and advanced paramagnetic resonance spectroscopies. PmoD CuA formation occurs rapidly and involves a short-lived intermediate with a max of 360 nm. Unlike other CuA sites, the PmoD CuA is unstable, decaying to two type 2 Cu2+ centers. Surprisingly, NMR data indicate that the PmoD CuA has a pure σu∗ ground state rather than the typical equilibrium between σu∗ and πu of all other CuA proteins. EPR, ENDOR, ESEEM, and HYSCORE data indicate the presence of two histidine and two cysteine ligands coordinating the CuA core in a highly symmetrical fashion. This report significantly expands the diversity and understanding of known CuA sites.Fil: Ross, Matthew O.. Northwestern University; Estados UnidosFil: Fisher, Oriana S.. Northwestern University; Estados UnidosFil: Morgada, Marcos Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Krzyaniak, Matthew D.. Northwestern University; Estados UnidosFil: Wasielewski, Michael R.. Northwestern University; Estados UnidosFil: Vila, Alejandro Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Hoffman, Brian M.. Northwestern University; Estados UnidosFil: Rosenzweig, Amy C.. Northwestern University; Estados Unido
    corecore