202 research outputs found

    Prevalence of pain-free weeks in chiropractic subjects with low back pain - a longitudinal study using data gathered with text messages

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>The use of automated text messages has made it possible to identify different courses of low back pain (LBP), and it has been observed that pain often fluctuates and that absolute recovery is rather rare. The purpose of this study was to describe the prevalence of pain-free weeks and pain-free periods in subjects with non-specific LBP treated by chiropractors, and to compare subjects from two different countries in these aspects.</p> <p>Methods</p> <p>Data were obtained from two practice-based multicentre prospective outcome studies, one Danish and one Swedish, involving subjects being treated by chiropractors for non-specific LBP. Over 18 weeks, subjects answered a weekly automated text message question on the number of days in the past week that they had experienced bothersome LBP, i.e. a number between 0 and 7. The number of weeks in a row without any LBP at all ("zero weeks") as well as the maximum number of zero weeks in a row was determined for each individual. Comparisons were made between the two study samples. Estimates are presented as percentages with 95% confidence intervals.</p> <p>Results</p> <p>In the Danish and the Swedish populations respectively, 93/110 (85%) and 233/262 (89%) of the subjects were eligible for analysis. In both groups, zero weeks were rather rare and were most commonly (in 40% of the zero weeks) reported as a single isolated week. The prevalence of pain free periods, i.e. reporting a maximum of 0, 1 or 2, or 3-6 zero weeks in a row, were similar in the two populations (20-31%). Smaller percentages were reported for ≥ 7 zero weeks in a row. There were no significant differences between the two study groups.</p> <p>Conclusion</p> <p>It was uncommon that chiropractic subjects treated for non-specific LBP experienced an entire week without any LBP at all over 18 weeks. When this occurred, it was most commonly reported for brief periods only. Hence, recovery in the sense that patients become absolutely pain free is rare, even in a primary care population.</p

    The Nordic back pain subpopulation program: Can low back pain patterns be predicted from the first consultation with a chiropractor? A longitudinal pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is widely believed that non-specific low back pain (LBP) consists of a number of subgroups which should be identified in order to improve treatment effects. In order to identify subgroups, patient characteristics that relate to different outcomes are searched for. However, LBP is often fluctuating or recurring rather than clearly limited in time. Therefore it would be relevant to consider outcome after completed treatment from a longitudinal perspective (describing "course patterns") instead of defining it from an arbitrarily selected end-point.</p> <p>Aims</p> <p>The objectives of this pilot study were to investigate the interobserver reliability of a diagnostic classification system and to evaluate whether diagnostic classes or other baseline characteristics are associated with the LBP course pattern over a period of 18 weeks.</p> <p>Methods</p> <p>Patients visiting one of 7 chiropractors because of LBP were classified according to a diagnostic classification system, which includes end-range loading, SI-joint pain provocation tests, neurological examination and tests for muscle tenderness and abnormal nerve tension. In addition, age, gender, duration of pain and presence of leg pain were registered in the patient's file. By weekly SMS-messages on their mobile phones, patients were asked how many days they had LBP the preceding week, and these answers were transformed into pain course patterns and the total number of LBP days.</p> <p>Results</p> <p>A total of 110 patients were included and 76 (69%) completed follow-up. Thirty-five patients were examined by two chiropractors. The agreement regarding diagnostic classes was 83% (95% CI: 70 - 96). The diagnostic classes were associated with the pain course patterns and number of LBP days. Patients with disc pain had the highest number of LBP days and patients with muscular pain reported the fewest (35 vs. 12 days, p < 0.01). Men had better outcome than women (17 vs. 29 days, p < 0.01) and patients without leg pain tended to have fewer LBP days than those with leg pain (21 vs.31 days, p = 0.06). Duration of LBP at the first visit was not associated with outcome.</p> <p>Conclusions</p> <p>The study indicated that there is a clinically meaningful relationship between diagnostic classes and the course of LBP. This should be evaluated in more depth.</p

    Risk factors for sickness absence due to low back pain and prognostic factors for return to work in a cohort of shipyard workers

    Get PDF
    The purpose of this study was to determine risk factors for the occurrence of sickness absence due to low back pain (LBP) and to evaluate prognostic factors for return to work. A longitudinal study with 1-year follow-up was conducted among 853 shipyard workers. The cohort was drawn around January 2004 among employees in the shipyard industry. Baseline information was obtained by questionnaire on physical and psychosocial work load, need for recovery, perceived general health, musculoskeletal complaints, sickness absence, and health care use during the past year. During the 1-year follow-up for each subject medical certifications were retrieved for information on the frequency and duration of spells of sickness absence and associated diagnoses. Cox regression analyses were conducted on occurrence and on duration of sickness absence with hazard ratios (HR) with 95% confidence interval (95% CI) as measure of association. During the 1-year follow-up period, 14% of the population was on sick leave at least once with LBP while recurrence reached 41%. The main risk factors for sickness absence were previous absence due to a health problem other than LBP (HR 3.07; 95%CI 1.66–5.68) or previous sickness absence due to LBP (HR 6.52; 95%CI 3.16–13.46). Care seeking for LBP and lower educational level also hold significant influences (HR 2.41; 95%CI 1.45–4.01 and HR 2.46; 95%CI 1.19–5.07, respectively). Living with others, night shift and supervising duties were associated with less absenteeism due to LBP. Workers with a history of herniated disc had a significantly decreased rate of returning to work, whereas those who suffered from hand-wrist complaints and LBP returned to work faster. Prior sick leave due to LBP partly captured the effects of work-related physical and psychosocial factors on occurrence of sick leave. Our study showed that individual and job characteristics (living alone, night shift, lower education, sick leave, or care seeking during the last 12 months) influenced the decision to take sick leave due to LBP. An increased awareness of those frequently on sick leave and additional management after return to work may have a beneficial effect on the sickness absence pattern

    Subacute and chronic, non-specific back and neck pain: cognitive-behavioural rehabilitation versus primary care. A randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the industrial world, non-specific back and neck pain (BNP) is the largest diagnostic group underlying sick-listing. For patients with subacute and chronic (= full-time sick-listed for 43 – 84 and 85 – 730 days, respectively) BNP, cognitive-behavioural rehabilitation was compared with primary care. The specific aim was to answer the question: within an 18-month follow-up, will the outcomes differ in respect of sick-listing and number of health-care visits?</p> <p>Methods</p> <p>After stratification by age (≤ 44/≥ 45 years) and subacute/chronic BNP, 125 Swedish primary-care patients were randomly allocated to cognitive-behavioural rehabilitation (rehabilitation group) or continued primary care (primary-care group). Outcome measures were <it>Return-to-work share </it>(percentage) and <it>Return-to-work chance </it>(hazard ratios) over 18 months, <it>Net days </it>(crude sick-listing days × degree), and the number of <it>Visits </it>(to physicians, physiotherapists etc.) over 18 months and the three component six-month periods. Descriptive statistics, Cox regression and mixed-linear models were used.</p> <p>Results</p> <p>All patients: <it>Return-to-work share </it>and <it>Return-to-work chance </it>were equivalent between the groups. <it>Net days </it>and <it>Visits </it>were equivalent over 18 months but decreased significantly more rapidly for the rehabilitation group over the six-month periods (<it>p </it>< .05). Subacute patients: <it>Return-to-work share </it>was equivalent. <it>Return-to-work chance </it>was significantly greater for the rehabilitation group (hazard ratio 3.5 [95%CI1.001 – 12.2]). <it>Net days </it>were equivalent over 18 months but decreased significantly more rapidly for the rehabilitation group over the six-month periods and there were 31 days fewer in the third period. <it>Visits </it>showed similar though non-significant differences and there were half as many in the third period. Chronic patients: <it>Return-to-work share, Return-to-work chance </it>and <it>Net days </it>were equivalent. <it>Visits </it>were equivalent over 18 months but tended to decrease more rapidly for the rehabilitation group and there were half as many in the third period (non-significant).</p> <p>Conclusion</p> <p>The results were equivalent over 18 months. However, there were indications that cognitive-behavioural rehabilitation in the longer run might be superior to primary care. For subacute BNP, it might be superior in terms of sick-listing and health-care visits; for chronic BNP, in terms of health-care visits only. More conclusive results concerning this possible long-term effect might require a longer follow-up.</p> <p>Trial registration</p> <p>NCT00488735.</p

    Intervention mapping for development of a participatory return-to-work intervention for temporary agency workers and unemployed workers sick-listed due to musculoskeletal disorders

    Get PDF
    BACKGROUND: In the past decade in activities aiming at return-to-work (RTW), there has been a growing awareness to change the focus from sickness and work disability to recovery and work ability. To date, this process in occupational health care (OHC) has mainly been directed towards employees. However, within the working population there are two vulnerable groups: temporary agency workers and unemployed workers, since they have no workplace/employer to return to, when sick-listed. For this group there is a need for tailored RTW strategies and interventions. Therefore, this paper aims to describe the structured and stepwise process of development, implementation and evaluation of a theory- and practise-based participatory RTW program for temporary agency workers and unemployed workers, sick-listed due to musculoskeletal disorders (MSD). This program is based on the already developed and cost-effective RTW program for employees, sick-listed due to low back pain. METHODS: The Intervention Mapping (IM) protocol was used to develop a tailor-made RTW program for temporary agency workers and unemployed workers, sick-listed due to MSD. The Attitude-Social influence-self-Efficacy (ASE) model was used as a theoretical framework for determinants of behaviour regarding RTW of the sick-listed worker and development of the intervention. To ensure participation and facilitate successful adoption and implementation, important stakeholders were involved in all steps of program development and implementation. Results of semi-structured interviews and 'fine-tuning' meetings were used to design the final participatory RTW program. RESULTS: A structured stepwise RTW program was developed, aimed at making a consensus-based RTW implementation plan. The new program starts with identifying obstacles for RTW, followed by a brainstorm session in which the sick-listed worker and the labour expert of the Social Security Agency (SSA) formulate solutions/possibilities for suitable (therapeutic) work. This process is guided by an independent RTW coordinator to achieve consensus. Based on the resulting RTW implementation plan, to create an actual RTW perspective, a vocational rehabilitation agency is assigned to find a matching (therapeutic) workplace. The cost-effectiveness of this participatory RTW program will be evaluated in a randomised controlled trial. CONCLUSION: IM is a promising tool for the development of tailor-made OHC interventions for the vulnerable working populatio

    Synchronous communication in PLM environments using annotated CAD models

    Full text link
    The connection of resources, data, and knowledge through communication technology plays a vital role in current collaborative design methodologies and Product Lifecycle Management (PLM) systems, as these elements act as channels for information and meaning. Despite significant advances in the area of PLM, most communication tools are used as separate services that are disconnected from existing development environments. Consequently, during a communication session, the specific elements being discussed are usually not linked to the context of the discussion, which may result in important information getting lost or becoming difficult to access. In this paper, we present a method to add synchronous communication functionality to a PLM system based on annotated information embedded in the CAD model. This approach provides users a communication channel that is built directly into the CAD interface and is valuable when individuals need to be contacted regarding the annotated aspects of a CAD model. We present the architecture of a new system and its integration with existing PLM systems, and describe the implementation details of an annotation-based video conferencing module for a commercial CAD application.This work was supported by the Spanish Ministry of Economy and Competitiveness and the FEDER Funds, through the ANNOTA project (Ref. TIN2013-46036-C3-1-R).Camba, JD.; Contero, M.; Salvador Herranz, GM.; Plumed, R. (2016). Synchronous communication in PLM environments using annotated CAD models. Journal of Systems Science and Systems Engineering. 25(2):142-158. https://doi.org/10.1007/s11518-016-5305-5S142158252Abrahamson, S., Wallace, D., Senin, N. & Sferro, P. (2000). Integrated design in a service marketplace. Computer-Aided Design, 32(2):97–107.Ahmed, S. (2005). Encouraging reuse of design knowledge: a method to index knowledge. Design Studies, 26:565–592.Alavi, M. & Tiwana, A (2002). Knowledge integration in virtual teams: the potential role of KMS. Journal of the American Society for Information Science and Technology, 53:1029–1037.Ameri, F. & Dutta, D. (2005). Product lifecycle management: closing the knowledge loops. Computer-Aided Design and Applications, 2(5):577–590.Anderson, A.H., Smallwood, L., MacDonald, R., Mullin, J., Fleming, A. & O'Malley, C. (2000). Video data and video links in mediated communication: what do users value? International Journal of Human-Computer Studies, 52(1):165–187.Arias, E., Eden, H., Fischer, G., Gorman, A. & Scharff, E. (2000). Transcending the individual human mind–creating shared understanding through collaborative design. ACM Transactions on Computer-Human Interaction (TOCHI) 7(1): 84–113.Barley, W.C., Leonardi, P.M., & Bailey, D.E. (2012). Engineering objects for collaboration: strategies of ambiguity and clarity at knowledge boundaries. Human Communication Research, 38:280–308.Boujut, J.F. & Dugdale, J. (2006). Design of a 3D annotation tool for supporting evaluation activities in engineering design. Cooperative Systems Design, COOP 6:1–8.Camba, J., Contero, M., Johnson, M. & Company, P. (2014). Extended 3D annotations as a new mechanism to explicitly communicate geometric design intent and increase CAD model reusability. Computer-Aided Design, 57:61–73.Camba, J., Contero, M. & Salvador-Herranz, G. (2014). Speak with the annotator: promoting interaction in a knowledge-based CAD environment built on the extended annotation concept. Proceedings of the 2014 IEEE 18th International Conference on Computer Supported Cooperative Work in Design (CSCWD), 196–201.Chudoba, K.M., Wynn, E., Lu, M. & Watson-Manheim, M.B. (2005). How virtual are we? Measuring virtuality and understanding its impact in a global organization. Information Systems Journal, 15(4):279–306.Danesi, F., Gardan, N. & Gardan, Y. (2006). Collaborative Design: from Concept to Application. Geometric Modeling and Imaging—New Trends, 90–96.Durstewitz, M., Kiefner, B., Kueke, R., Putkonen, H., Repo, P. & Tuikka, T. (2002). Virtual collaboration environment for aircraft design. Proceedings of the IEEE 6th International Conference on Information Visualisation, 502–507.Fisher, D., Brush, A.J., Gleave, E. & Smith, M.A. (2006). Revisiting Whittaker and Sidner’s email overload ten years later. Proceedings of the 2006 20th Anniversary Conference on Computer Supported Cooperative Work. ACM, BanffFonseca, M.J., Henriques, E., Silva, N., Cardoso, T. & Jorge, J.A. (2006). A collaborative CAD conference tool to support mobile engineering. Rapid Product Development (RPD’06), Marinha Grande, Portugal.Frechette, S.P. (2011). Model based enterprise for manufacturing. Proceedings of the 44th CIRP International Conference on Manufacturing Systems.Fu, W.X., Bian, J. & Xu, Y.M. (2013). A video conferencing system for collaborative engineering design. Applied Mechanics and Materials, 344:246–252.Fuh, J.Y.H. & Li, W.D. (2005). Advances in collaborative CAD: the-state-of-the art. Computer-Aided Design, 37:571–581.Fussell, S.R., Kraut, R.E. & Siegel, J. (2000). Coordination of communication: effects of shared visual context on collaborative work. Proceedings of the 2000 ACM Conference on Computer Supported Cooperative Work, 21–30.Gajewska, H., Kistler, J., Manasse, M.S. & Redell, D. (1994). Argo: a system for distributed collaboration. Proceedings of the ACM Second International Conference on Multimedia, San Francisco, CA, USA. 433–440.Gantz, J., Reinsel, D., Chute, C., Schlichting, W., Mcarthur, J., Minton, S., Xheneti, I., Toncheva, A. & Manfrediz, A. (2007). The expanding digital universe: a forecast of worldwide information growth through 2010. IDC, Massachusetts.Gowan, Jr. J.A. & Downs, J.M. (1994). Video conferencing human-machine interface: a field study. Information and Management, 27(6):341–356.Gupta, A., Mattarelli, E., Seshasai, S. & Broschak, J. (2009). Use of collaborative technologies and knowledge sharing in co-located and distributed teams: towards the 24-h knowledge factory. The Journal of Strategic Information Systems, 18:147–161.Hickson, I. (2009). The Web Socket Protocol IETF, Standards Track.Hong, J., Toye, G. & Leifer, L.J. (1996). Engineering design notebook for sharing and reuse. Computers in Industry, 29:27–35.Isaacs, E.A. & Tang, J.C. (1994). What video can and cannot do for collaboration: a case study. Multimedia Systems, 2(2):63–73.Karsenty, L. (1999). Cooperative work and shared visual context: an empirical study of comprehension problems in side-by-side and remote help dialogues. Human Computer Interaction, 14(3): 283–315.Lahti, H., Seitamaa-Hakkarainen, P. & Hakkarainen, K. (2004). Collaboration patterns in computer supported collaborative designing. Design Studies, 25:351–371.Leenders, R.T.A., Van Engelen, J.M. & Kratzer, J. (2003). Virtuality, communication, and new product team creativity: a social network perspective. Journal of Engineering and Technology Management, 20(1):69–92.Levitt, R.E., Jin, Y. & Dym, C.L. (1991). Knowledge-based support for management of concurrent, multidisciplinary design. Artificial Intelligence for Engineering, Design, Analysis and Manufacturing, 5(2):77–95.Li, C., McMahon, C. & Newnes, L. (2009). Annotation in product lifecycle management: a review of approaches. Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, DETC2009. Vol. 2. New York: ASME, 797–806.Li, W.D., Lu, W.F., Fuh, J.Y. & Wong, Y.S. (2005). Collaborative computer-aided design-research and development status. Computer-Aided Design, 37(9):931–940.Londono, F., Cleetus, K.J., Nichols, D.M., Iyer, S., Karandikar, H.M., Reddy, S.M., Potnis, S.M., Massey, B., Reddy, A. & Ganti, V. (1992). Coordinating a virtual team. CERC-TR-RN-92-005, Concurrent Engineering Research Centre, West Virginia University, West Virginia.Lubell, J., Chen, K., Horst, J., Frechette, S., & Huang, P. (2012). Model based enterprise/technical data package summit report. NIST Technical Note, 1753.May, A. & Carter, C. (2001). A case study of virtual team working in the European automotive industry. International Journal of Industrial Ergonomics, 27(3):171–186.Olson, J.S., Olson, G.M. & Meader, D.K. (1995). What mix of video and audio is useful for small groups doing remote real-time design work? Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM Press, Addison-Wesley Publishing Co.Ping-Hung, H., Mishra, C.S. & Gobeli, D.H. (2003). The return on R&D versus capital expenditures in pharmaceutical and chemical industries. IEEE Transactions on Engineering Management, 50:141–150.Sharma, A. (2005). Collaborative product innovation: integrating elements of CPI via PLM framework. Computer-Aided Design, 37(13):1425–1434.Shum, S.J.B., Selvin, A.M., Sierhuis, M., Conklin, J., Haley, C.B. & Nuseibeh, B. (2006). Hypermedia support for argumentation-based rationale: 15 Years on from Gibis and Qoc. Rationale Management in Software Engineering, 111–132.Siltanen, P. & Valli, S. (2013). Web-based 3D Mediated Communication in Manufacturing Industry. Concurrent Engineering Approaches for Sustainable Product Development in a Multidisciplinary Environment, 1181–1192. Springer London.Stark, J. (2011). Product Lifecycle Management. 1–16. Springer London.Tavcar, J., Potocnik, U. & Duhovnik, J. (2013). PLM used as a backbone for concurrent engineering in supply chain. Concurrent Engineering Approaches for Sustainable Product Development in a Multi-Disciplinary Environment, 681–692.Tay, F.E.H. & Ming, C. (2001). A shared multi-media design environment for concurrent engineering over the internet. Concurrent Engineering, 9(1):55–63.Tay, F.E.H. & Roy, A. (2003). CyberCAD: a collaborative approach in 3D-CAD technology in a multimedia-supported environment. Computers in Industry, 52(2):127–145.Toussaint, J. & Cheng, K. (2002). Design agility and manufacturing responsiveness on the web. Integrated Manufacturing Systems, 13(5):328–339.Tsoi, K.N. & Rahman, S.M. (1996). Media-on-demand multimedia electronic mail: a tool for collaboration on the web. Proceedings of the 5th IEEE International Symposium on High Performance Distributed Computing.Upton, D.M. & Mcafee, A. (1999). The Real Virtual Factory. Harvard Business School Press, 69–89.Vila, C., Estruch, A., Siller, H.R., Abellán, J.V. & Romero, F. (2007). Workflow methodology for collaborative design and manufacturing. Cooperative Design, Visualization, and Engineering 42–49, Springer Berlin Heidelberg.Wasiak, J., Hicks, B., Newnes, L., Dong, A., & Burrow, L. (2010). Understanding engineering email: the development of a taxonomy for identifying and classifying engineering work. Research in Engineering Design, 21(1):43–64.Wasko, M.M. & Faraj, S. (2005). Why should I share? Examining social capital and knowledge contribution in electronic networks of practice. MIS Quarterly: Management Information Systems, 29:35–57.Yang, Q.Z., Zhang, Y., Miao, C.Y. & Shen, Z.Q. (2008). Semantic annotation of digital engineering resources for multidisciplinary design collaboration. ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 617–624. American Society of Mechanical Engineers.You, C.F. & Chao, S.N. (2006). Multilayer architecture in collaborative environment. Concurrent Engineering Research and Applications, 14(4):273–281.Yuan, Y.C., Fulk, J., Monge, P.R. & Contractor, N. (2010). Expertise directory development, shared task interdependence, and strength of communication network ties as multilevel predictors of expertise exchange in transactive memory work groups. Communication Research, 37: 20–47

    Predictors of stable return-to-work in non-acute, non-specific spinal pain: low total prior sick-listing, high self prediction and young age. A two-year prospective cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Non-specific spinal pain (NSP), comprising back and/or neck pain, is one of the leading disorders in long-term sick-listing. During 2000-2004, 125 Swedish primary-care patients with non-acute NSP, full-time sick-listed 6 weeks-2 years, were included in a randomized controlled trial to compare a cognitive-behavioural programme with traditional primary care. This prospective cohort study is a re-assessment of the data from the randomized trial with the 2 treatment groups considered as a single cohort. The aim was to investigate which baseline variables predict a stable return-to-work during a 2-year period after baseline: objective variables from function tests, socioeconomic, subjective and/or treatment variables. Stable return-to-work was a return-to-work lasting for at least 1 month from the start of follow-up.</p> <p>Methods</p> <p><it>Stable return-to-work </it>was the outcome variable, the above-mentioned factors were the predictive variables in multiple-logistic regression models, one per follow-up at 6, 12, 18 and 24 months after baseline. The factors from univariate analyzes with a <it>p</it>-value of at most .10 were included. The non-significant variables were excluded stepwise to yield models comprising only significant factors (<it>p </it>< .05). As the comparatively few cases made it risky to associate certain predictors with certain time-points, we finally considered the predictors which were represented in at least 3 follow-ups. They are presented with odds ratios (OR) and 95% confidence intervals.</p> <p>Results</p> <p>Three variables qualified, all of them represented in 3 follow-ups: <it>Low total prior sick-listing </it>(including all diagnoses) was the strongest predictor in 2 follow-ups, 18 and 24 months, OR 4.8 [1.9-12.3] and 3.8 [1.6-8.7] respectively, <it>High self prediction </it>(the patients' own belief in return-to-work) was the strongest at 12 months, OR 5.2 [1.5-17.5] and <it>Young age </it>(max 44 years) the second strongest at 18 months, OR 3.5 [1.3-9.1].</p> <p>Conclusions</p> <p>In primary-care patients with non-acute NSP, the strong predictors of stable return-to-work were 2 socioeconomic variables, <it>Low total prior sick-listing </it>and <it>Young age</it>, and 1 subjective variable, <it>High self-prediction</it>. Objective variables from function tests and treatment variables were non-predictors. Except for <it>Young age</it>, the predictors have previously been insufficiently studied, and so our study should widen knowledge within clinical practice.</p> <p>Trial registration</p> <p>Trial registration number for the original trial NCT00488735.</p

    The establishment of a primary spine care practitioner and its benefits to health care reform in the United States

    Get PDF
    It is widely recognized that the dramatic increase in health care costs in the United States has not led to a corresponding improvement in the health care experience of patients or the clinical outcomes of medical care. In no area of medicine is this more true than in the area of spine related disorders (SRDs). Costs of medical care for SRDs have skyrocketed in recent years. Despite this, there is no evidence of improvement in the quality of this care. In fact, disability related to SRDs is on the rise. We argue that one of the key solutions to this is for the health care system to have a group of practitioners who are trained to function as primary care practitioners for the spine. We explain the reasons we think a primary spine care practitioner would be beneficial to patients, the health care system and society, some of the obstacles that will need to be overcome in establishing a primary spine care specialty and the ways in which these obstacles can be overcome.https://doi.org/10.1186/2045-709X-19-1
    corecore