18 research outputs found

    Current Status and Future Development of Cell Transplantation Therapy for Periodontal Tissue Regeneration

    Get PDF
    It has been shown that stem cell transplantation can regenerate periodontal tissue, and several clinical trials involving transplantation of stem cells into human patients have already begun or are in preparation. However, stem cell transplantation therapy is a new technology, and the events following transplantation are poorly understood. Several studies have reported side effects and potential risks associated with stem cell transplantation therapy. To protect patients from such risks, governments have placed regulations on stem cell transplantation therapies. It is important for the clinicians to understand the relevant risks and governmental regulations. This paper describes the ongoing clinical studies, basic research, risks, and governmental controls related to stem cell transplantation therapy. Then, one clinical study is introduced as an example of a government-approved periodontal cell transplantation therapy

    Periodontal regeneration with autologous periodontal ligament-derived cell sheets – A safety and efficacy study in ten patients

    No full text
    Background: Periodontitis results in the destruction of tooth-supporting periodontal tissues and does not have the ability to heal spontaneously. Various approaches have been introduced to regenerate periodontal tissues; however, these approaches have limited efficacy for treating severe defects. Cytotherapies combine stem cell biology and tissue engineering to form a promising approach for overcoming these limitations. In this study, we isolated periodontal ligament (PDL)-derived cells from patients and created cell sheets with “Cell Sheet Engineering Technology”, using temperature responsive culture dishes, in which all the cultured cells can be harvested as an intact transplantable cell sheet by reducing the temperature of the culture dish. Subsequently, the safety and efficacy of autologous PDL-derived cell sheets were evaluated in a clinical setting. Methods: A single-arm and single-institute clinical study was performed to verify the safety and efficacy of autologous PDL-derived cell sheets in patients with periodontitis. Wisdom teeth were extracted from patients diagnosed with chronic periodontitis, ranging in age from 33 to 63 years (mean [±SD], 46 ± 12), and periodontal tissues were scraped for cell sources. Three-layered PDL-derived cell sheets were constructed using temperature-responsive culture dishes and transplanted in an autologous fashion following standard flap surgeries. Bony defects were filled with beta-tricalcium phosphate granules. Clinical variables were evaluated at baseline, 3 months, and 6 months. Cone-beam computed tomography was performed at baseline and 6 months. Additionally, mid-long-term follow-up has been performed with patients’ agreements. Results: Our method was found to be safe and no severe adverse events were identified. All the findings, including reduction of periodontal probing depth (mean ± SD, 3.2 ± 1.9 mm), clinical attachment gain (2.5 ± 2.6 mm), and increase of radiographic bone height (2.3 ± 1.8 mm), were improved in all 10 cases at 6 months after the transplantation. These therapeutic effects were sustained during a mean follow-up period of 55 ± 19 months, and there were no serious adverse events. Conclusions: The results of this study validate the safety and efficacy of autologous PDL-derived cell sheets in severe periodontal defects, and the stability of this efficacy during mid-long-term follow up. This cytotherapeutic approach, based on cell sheet engineering, offers an innovative strategy to treat the recognized unmet need of treating severe periodontal defects. Keywords: Periodontal regeneration, Cytotherapy, Cell sheet, Clinical study, Multipotent mesenchymal stromal cells (MSCs), Periodontal ligament, Cone-beam computed tomography (CBCT), Stem cell

    The International Linear Collider: Report to Snowmass 2021

    No full text
    The International Linear Collider (ILC) is on the table now as a new global energy-frontier accelerator laboratory taking data in the 2030s. The ILC addresses key questions for our current understanding of particle physics. It is based on a proven accelerator technology. Its experiments will challenge the Standard Model of particle physics and will provide a new window to look beyond it. This document brings the story of the ILC up to date, emphasizing its strong physics motivation, its readiness for construction, and the opportunity it presents to the US and the global particle physics community

    The International Linear Collider: Report to Snowmass 2021

    No full text
    International audienceThe International Linear Collider (ILC) is on the table now as a new global energy-frontier accelerator laboratory taking data in the 2030s. The ILC addresses key questions for our current understanding of particle physics. It is based on a proven accelerator technology. Its experiments will challenge the Standard Model of particle physics and will provide a new window to look beyond it. This document brings the story of the ILC up to date, emphasizing its strong physics motivation, its readiness for construction, and the opportunity it presents to the US and the global particle physics community

    The International Linear Collider:Report to Snowmass 2021

    No full text

    The International Linear Collider: Report to Snowmass 2021

    No full text
    The International Linear Collider (ILC) is on the table now as a new global energy-frontier accelerator laboratory taking data in the 2030s. The ILC addresses key questions for our current understanding of particle physics. It is based on a proven accelerator technology. Its experiments will challenge the Standard Model of particle physics and will provide a new window to look beyond it. This document brings the story of the ILC up to date, emphasizing its strong physics motivation, its readiness for construction, and the opportunity it presents to the US and the global particle physics community
    corecore