32 research outputs found
Stability of Silk and Collagen Protein Materials in Space
Collagen and silk materials, in neat forms and as silica composites, were flown for 18 months on the International Space Station [Materials International Space Station Experiment (MISSE)-6] to assess the impact of space radiation on structure and function. As natural biomaterials, the impact of the space environment on films of these proteins was investigated to understand fundamental changes in structure and function related to the future utility in materials and medicine in space environments. About 15% of the film surfaces were etched by heavy ionizing particles such as atomic oxygen, the major component of the low-Earth orbit space environment. Unexpectedly, more than 80% of the silk and collagen materials were chemically crosslinked by space radiation. These findings are critical for designing next-generation biocompatible materials for contact with living systems in space environments, where the effects of heavy ionizing particles and other cosmic radiation need to be considered
Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021
This online publication has been
corrected. The corrected version
first appeared at thelancet.com
on September 28, 2023BACKGROUND : Diabetes is one of the leading causes of death and disability worldwide, and affects people regardless of country, age group, or sex. Using the most recent evidentiary and analytical framework from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD), we produced location-specific, age-specific, and sex-specific estimates of diabetes prevalence and burden from 1990 to 2021, the proportion of type 1 and type 2 diabetes in 2021, the proportion of the type 2 diabetes burden attributable to selected risk factors, and projections of diabetes prevalence through 2050. METHODS : Estimates of diabetes prevalence and burden were computed in 204 countries and territories, across 25 age groups, for males and females separately and combined; these estimates comprised lost years of healthy life, measured in disability-adjusted life-years (DALYs; defined as the sum of years of life lost [YLLs] and years lived with disability [YLDs]). We used the Cause of Death Ensemble model (CODEm) approach to estimate deaths due to diabetes, incorporating 25 666 location-years of data from vital registration and verbal autopsy reports in separate total (including both type 1 and type 2 diabetes) and type-specific models. Other forms of diabetes, including gestational and monogenic diabetes, were not explicitly modelled. Total and type 1 diabetes prevalence was estimated by use of a Bayesian meta-regression modelling tool, DisMod-MR 2.1, to analyse 1527 location-years of data from the scientific literature, survey microdata, and insurance claims; type 2 diabetes estimates were computed by subtracting type 1 diabetes from total estimates. Mortality and prevalence estimates, along with standard life expectancy and disability weights, were used to calculate YLLs, YLDs, and DALYs. When appropriate, we extrapolated estimates to a hypothetical population with a standardised age structure to allow comparison in populations with different age structures. We used the comparative risk assessment framework to estimate the risk-attributable type 2 diabetes burden for 16 risk factors falling under risk categories including environmental and occupational factors, tobacco use, high alcohol use, high body-mass index (BMI), dietary factors, and low physical activity. Using a regression framework, we forecast type 1 and type 2 diabetes prevalence through 2050 with Socio-demographic Index (SDI) and high BMI as predictors, respectively. FINDINGS : In 2021, there were 529 million (95% uncertainty interval [UI] 500–564) people living with diabetes worldwide, and the global age-standardised total diabetes prevalence was 6·1% (5·8–6·5). At the super-region level, the highest age-standardised rates were observed in north Africa and the Middle East (9·3% [8·7–9·9]) and, at the regional level, in Oceania (12·3% [11·5–13·0]). Nationally, Qatar had the world’s highest age-specific prevalence of diabetes, at 76·1% (73·1–79·5) in individuals aged 75–79 years. Total diabetes prevalence—especially among older adults—primarily reflects type 2 diabetes, which in 2021 accounted for 96·0% (95·1–96·8) of diabetes cases and 95·4% (94·9–95·9) of diabetes DALYs worldwide. In 2021, 52·2% (25·5–71·8) of global type 2 diabetes DALYs were attributable to high BMI. The contribution of high BMI to type 2 diabetes DALYs rose by 24·3% (18·5–30·4) worldwide between 1990 and 2021. By 2050, more than 1·31 billion (1·22–1·39) people are projected to have diabetes, with expected age-standardised total diabetes prevalence rates greater than 10% in two super-regions: 16·8% (16·1–17·6) in north Africa and the Middle East and 11·3% (10·8–11·9) in Latin America and Caribbean. By 2050, 89 (43·6%) of 204 countries and territories will have an age-standardised rate greater than 10%. INTERPRETATION : Diabetes remains a substantial public health issue. Type 2 diabetes, which makes up the bulk of diabetes cases, is largely preventable and, in some cases, potentially reversible if identified and managed early in the disease course. However, all evidence indicates that diabetes prevalence is increasing worldwide, primarily due to a rise in obesity caused by multiple factors. Preventing and controlling type 2 diabetes remains an ongoing challenge. It is essential to better understand disparities in risk factor profiles and diabetes burden across populations, to inform strategies to successfully control diabetes risk factors within the context of multiple and complex drivers.Bill & Melinda Gates Foundation.http://www.thelancet.comam2024School of Health Systems and Public Health (SHSPH)SDG-03:Good heatlh and well-bein
NANIVID: A New Research Tool for Tissue Microenvironment Studies
Metastatic tumors are heterogeneous in nature and composed of subpopulations of cells having various metastatic potentials. The time progression of a tumor creates a unique microenvironment to improve the invasion capabilities and survivability of cancer cells in different microenvironments. In the early stages of intravasation, cancer cells establish communication with other cell types through a paracrine loop and covers long distances by sensing growth factor gradients through extracellular matrices. Cellular migration both in vitro and in vivo is a complex process and to understand their motility in depth, sophisticated techniques are required to document and record events in real time. This study presents the design and optimization of a new versatile chemotaxis device called the NANIVID (NANo IntraVital Imaging Device), developed using advanced Nano/Micro fabrication techniques. The current version of this device has been demonstrated to form a stable (epidermal growth factor) EGF gradient in vitro (2D and 3D) while a miniaturized size of NANIVID is used as an implantable device for intravital studies of chemotaxis and to collect cells in vivo. The device is fabricated using microfabrication techniques in which two substrates are bonded together using a thin polymer layer creating a bonded device with one point source (approximately 150 ìm x 50 ìm) outlet. The main structures of the device consist of two transparent substrates: one having etched chambers and channel while the second consists of a microelectrode system to measure real time cell arrival inside the device. The chamber of the device is loaded with a growth factor reservoir consisting of hydrogel to sustain a steady release of growth factor into the surrounding environment for long periods of time and establishing a concentration gradient from the device. The focus of this study was to design and optimize the new device for cell chemotaxis studies in breast cancer cells in cell culture. Our results show that we have created a flexible, cheap, miniature and autonomous chemotaxis device and demonstrate its usefulness in 2D and 3D cell culture. We also provide preliminary data for use of the device in vivo
The blue light in a ladder system: from double resonance optical pumping to Autler-Townes splitting
In this experimental work we report our findings about a Ladder (Ξ) transition 5S1∕2 → 5P3∕2 → 5D3∕2 of 85Rb atoms under different laser power combinations. Based on the ratio of power levels of two individual lasers, which are used in counter-propagating configuration, the system exhibits double resonance optical pumping and Autler-Townes splitting. The excursion of the Ξ level coupling is studied alongwith photon counting of blue light originating from 5D3∕2 → 6P3∕2 → 5S1∕2 non-degenerate decay. The blue photon statistics shows that emitted radiation are thermal. However the probability density of the integrated photon count vs. laser power exhibits a jump in intensity scale followed by a long tail, which resembles Lèvy type distribution. This may be considered as a signature when the level dressing changes in Ξ system as theoretically discussed earlier by Abi-Salloum [T.Y. Abi-Salloum, J. Mod. Opt. 57, 1366 (2010); T.Y. Abi-Salloum, Phys. Rev. A 81, 053836 (2010)]
Osteogenic Differentiation Of Electrostimulated Human Mesenchymal Stem Cells Seeded On Silk-Fibroin Films
Electric field is known as an important regulator to guide the development and regeneration of many tissues. The aim of this study was to investigate the osteogenic differentiation potential of human mesenchymal stem cells (hMSCs) cultivated on silk-fibroin films in response to different parameters, i.e. frequency, voltage, distance between electrodes, and/or culture conditions (growth medium or osteogenic medium). Silk films were prepared in the presence of platinum wires to study the impact of exogenous electrostimulation on the cells for up to 14 days. The experimental groups can be defined as high voltage in osteogenic differentiation medium, low voltage in osteogenic differentiation medium, and low voltage in growth medium in this study. Compared to the unstimulated controls (silk films without platinum wires), low voltage (10 mV) did not influence proliferation, while it enhanced osteogenic differentiation according to early and late osteogenic markers in osteogenic differentiation medium. In growth medium, low voltage increased cell proliferation in contrast to osteogenic medium. On the other hand, high voltage (500 mV) stimulated cell proliferation and only late osteogenic markers in osteogenic medium. The results suggest the potential to exploit exogenous biophysical control of cell functions towards tissue-specific goals.Wo
Self-Organizing 3D Human Neural Tissue Derived from Induced Pluripotent Stem Cells Recapitulate Alzheimer’s Disease Phenotypes
The dismal success rate of clinical trials for Alzheimer’s disease (AD) motivates us to develop model systems of AD pathology that have higher predictive validity. The advent of induced pluripotent stem cells (iPSCs) allows us to model pathology and study disease mechanisms directly in human neural cells from healthy individual as well as AD patients. However, two-dimensional culture systems do not recapitulate the complexity of neural tissue, and phenotypes such as extracellular protein aggregation are difficult to observe. We report brain organoids that use pluripotent stem cells derived from AD patients and recapitulate AD-like pathologies such as amyloid aggregation, hyperphosphorylated tau protein, and endosome abnormalities. These pathologies are observed in an age-dependent manner in organoids derived from multiple familial AD (fAD) patients harboring amyloid precursor protein (APP) duplication or presenilin1 (PSEN1) mutation, compared to controls. The incidence of AD pathology was consistent amongst several fAD lines, which carried different mutations. Although these are complex assemblies of neural tissue, they are also highly amenable to experimental manipulation. We find that treatment of patient-derived organoids with β- and γ-secretase inhibitors significantly reduces amyloid and tau pathology. Moreover, these results show the potential of this model system to greatly increase the translatability of pre-clinical drug discovery in AD
Synergistic Effect of Exogeneous and Endogeneous Electrostimulation on Osteogenic Differentiation of Human Mesenchymal Stem Cells Seeded on Silk Scaffolds
Bioelectrical regulation of bone fracture healing is important for many cellular events such as proliferation, migration, and differentiation. The aim of this study was to investigate the osteogenic differentiation potential of human mesenchymal stem cells (hMSCs) cultivated on silk scaffolds in response to different modes of electrostimulation (e.g., exogeneous and/or endogeneous). Endogeneous electrophysiology was altered through the use of monensin (10nM) and glibenclamide (10M), along with external electrostimulation (60kHz; 100-500mV). Monensin enhanced the expression of early osteogenic markers such as alkaline phosphatase (ALP) and runt-related transcription factor 2 (RUNX-2). When exogeneous electrostimulation was combined with glibenclamide, more mature osteogenic marker upregulation based on bone sialoprotein expression (BSP) and mineralization was found. These results suggest the potential to exploit both exogeneous and endogeneous biophysical control of cell functions towards tissue-specific goals. (c) 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:581-590, 2016.Wo
Organoids created from different lines of AD patient iPSCs exhibit AD phenotypes.
<p>(A) Tissue sections from fAD (<i>APP</i><sup>Dp</sup>2-3, ND34732, AG068840) and control (Ctrl; CS-0020-01, AG09173) organoids were processed for immunoreactivity against Aβ (D45D2, white), MAP2 (red), and pTau (S396, green) and labeled with the nuclear dye Hoechst. (B) Quantification of Aβ immunoreactivity in fAD and Ctrl organoids following 90 days of culture. Values between the two control lines did not significantly differ. Number of Aβ-positive aggregates in two size classes (Particle Counts): one-way ANOVA with post-hoc Tukey’s multiple comparisons test; <i>F</i> (4,21) = 6.15, **p = 0.0019, R<sup>2</sup> = 0.5396 (1–3μm); <i>F</i> (4,21) = 7.95, ***p = 0.0005, R<sup>2</sup> = 0.6024 (3–6 μm). (C) Quantification of the average intensity of pTau Ser396 immunoreactivity as a fold change of Ctrl in fAD and Ctrl organoids following 90 days of culture. Values between the two control lines did not significantly differ. (Each data point represent one organoid). One-way ANOVA with post-hoc Tukey’s multiple comparisons test; <i>F</i> (4,20) = 9.629, ***p = 0.0002, R<sup>2</sup> = 0.6582. On charts: *p < 0.05, **p < 0.01, ***p < 0.001.</p
Organoids created from AD patient iPSCs respond to compound treatment.
<p>(A) Schematic of beta (BACE-1) and gamma (Comp-E) secretase inhibitor treatment (top). At 30 days of culture, fAD (<i>APP</i><sup>Dp</sup>1-1) organoids were treated with low dose (BACE-1, 1μM and Comp-E, 3nM) or high dose (BACE-1, 5 μM and Comp-E 6nM) combined compounds, or equivalent DMSO vehicle. Following 30 or 60 days of culture and drug treatment, organoids at 60 and 90 days of culture, respectively, were processed for immunohistochemistry (IHC). Tissue sections from fAD (<i>APP</i><sup>Dp</sup>1-1) and control (Ctrl; CS-0020-01) organoids were processed for immunoreactivity against Aβ (D45D2, white), pTau (Ser396, green), and MAP2 (red). Examine images are from 90 day organoids. (B) Quantification of Aβ particle number and size in compound treated and fAD organoids following 30 days of administration. Number of Aβ-positive aggregates in two size classes (Particle Counts): one-way ANOVA with Fishers LSD test for multiple comparisons; <i>F</i> (5,24) = 3.58, *p = 0.014, R<sup>2</sup> = 0.4296. Particle size: one-way ANOVA with Kruskal-Wallis test for non-normal distribution (α < 0.05), p = 0.475. (C) Quantification of Aβ particle number and size in treated (high dose) and untreated fAD organoids following 60 days of compound administration. Number of Aβ-positive aggregates in three size classes (Particle Counts): one-way ANOVA with Fishers LSD test for multiple comparisons; <i>F</i> (5,19) = 5.02, **p = 0.004, R<sup>2</sup> = 0.5691. Particle size: Mann-Whitney two-tailed test for non-normal distribution (α < 0.05), p = 0.09. (D) Quantification of the average intensity of pTau Ser396 immunoreactivity as a fold change of Ctrl in fAD organoids following 30 and 60 days of compound treatment. 30 day treatment. (Each data point represent one organoid). Unpaired two-tailed t-test with equal variance, p = 0.69. 60 day treatment: one-way ANOVA with Tukey’s multiple comparisons test, F (2,13) = 19.82, ***p = 0.0001, R<sup>2</sup> = 0.7530. On charts: *p < 0.05, **p < 0.01, ***p < 0.001.</p