3 research outputs found

    Dystrophin-deficient dogs with reduced myostatin have unequal muscle growth and greater joint contractures

    Get PDF
    Abstract Background Myostatin (Mstn) is a negative regulator of muscle growth whose inhibition promotes muscle growth and regeneration. Dystrophin-deficient mdx mice in which myostatin is knocked out or inhibited postnatally have a less severe phenotype with greater total mass and strength and less fibrosis and fatty replacement of muscles than mdx mice with wild-type myostatin expression. Dogs with golden retriever muscular dystrophy (GRMD) have previously been noted to have increased muscle mass and reduced fibrosis after systemic postnatal myostatin inhibition. Based partly on these results, myostatin inhibitors are in development for use in human muscular dystrophies. However, persisting concerns regarding the effects of long-term and profound myostatin inhibition will not be easily or imminently answered in clinical trials. Methods To address these concerns, we developed a canine (GRippet) model by crossbreeding dystrophin-deficient GRMD dogs with Mstn-heterozygous (Mstn +/−) whippets. A total of four GRippets (dystrophic and Mstn +/−), three GRMD (dystrophic and Mstn wild-type) dogs, and three non-dystrophic controls from two litters were evaluated. Results Myostatin messenger ribonucleic acid (mRNA) and protein levels were downregulated in both GRMD and GRippet dogs. GRippets had more severe postural changes and larger (more restricted) maximal joint flexion angles, apparently due to further exaggeration of disproportionate effects on muscle size. Flexors such as the cranial sartorius were more hypertrophied on magnetic resonance imaging (MRI) in the GRippets, while extensors, including the quadriceps femoris, underwent greater atrophy. Myostatin protein levels negatively correlated with relative cranial sartorius muscle cross-sectional area on MRI, supporting a role in disproportionate muscle size. Activin receptor type IIB (ActRIIB) expression was higher in dystrophic versus control dogs, consistent with physiologic feedback between myostatin and ActRIIB. However, there was no differential expression between GRMD and GRippet dogs. Satellite cell exhaustion was not observed in GRippets up to 3 years of age. Conclusions Partial myostatin loss may exaggerate selective muscle hypertrophy or atrophy/hypoplasia in GRMD dogs and worsen contractures. While muscle imbalance is not a feature of myostatin inhibition in mdx mice, findings in a larger animal model could translate to human experience with myostatin inhibitors

    Gene expression profiling of skeletal muscles treated with a soluble activin type IIB receptor

    No full text
    Inhibition of the myostatin signaling pathway is emerging as a promising therapeutic means to treat muscle wasting and degenerative disorders. Activin type IIB receptor (ActRIIB) is the putative myostatin receptor, and a soluble activin receptor (ActRIIB-Fc) has been demonstrated to potently inhibit a subset of transforming growth factor (TGF)-β family members including myostatin. To determine reliable and valid biomarkers for ActRIIB-Fc treatment, we assessed gene expression profiles for quadriceps muscles from mice treated with ActRIIB-Fc compared with mice genetically lacking myostatin and control mice. Expression of 134 genes was significantly altered in mice treated with ActRIIB-Fc over a 2-wk period relative to control mice (fold change > 1.5, P < 0.001), whereas the number of significantly altered genes in mice treated for 2 days was 38, demonstrating a time-dependent response to ActRIIB-Fc in overall muscle gene expression. The number of significantly altered genes in Mstn−/− mice relative to control mice was substantially higher (360), but for most of these genes the expression levels in the 2-wk treated mice were closer to the levels in the Mstn−/− mice than in control mice (P < 10−30). Expression levels of 30 selected genes were further validated with quantitative real-time polymerase chain reaction (qPCR), and a correlation of ≥0.89 was observed between the fold changes from the microarray analysis and the qPCR analysis. These data suggest that treatment with ActRIIB-Fc results in overlapping but distinct gene expression signatures compared with myostatin genetic mutation. Differentially expressed genes identified in this study can be used as potential biomarkers for ActRIIB-Fc treatment, which is currently in clinical trials as a therapeutic agent for muscle wasting and degenerative disorders

    Inhibition of myostatin does not ameliorate disease features of severe spinal muscular atrophy mice

    No full text
    There is currently no treatment for the inherited motor neuron disease, spinal muscular atrophy (SMA). Severe SMA causes lower motor neuron loss, impaired myofiber development, profound muscle weakness and early mortality. Myostatin is a transforming growth factor-β family member that inhibits muscle growth. Loss or blockade of myostatin signaling increases muscle mass and improves muscle strength in mouse models of primary muscle disease and in the motor neuron disease, amyotrophic lateral sclerosis. In this study, we evaluated the effects of blocking myostatin signaling in severe SMA mice (hSMN2/delta7SMN/mSmn−/−) by two independent strategies: (i) transgenic overexpression of the myostatin inhibitor follistatin and (ii) post-natal administration of a soluble activin receptor IIB (ActRIIB-Fc). SMA mice overexpressing follistatin showed little increase in muscle mass and no improvement in motor function or survival. SMA mice treated with ActRIIB-Fc showed minimal improvement in motor function, and no extension of survival compared with vehicle-treated mice. Together these results suggest that inhibition of myostatin may not be a promising therapeutic strategy in severe forms of SMA
    corecore