277 research outputs found

    Frequency distribution of TATA Box and extension sequences on human promoters

    Get PDF
    BACKGROUND: TATA box is one of the most important transcription factor binding sites. But the exact sequences of TATA box are still not very clear. RESULTS: In this study, we conduct a dedicated analysis on the frequency distribution of TATA Box and its extension sequences on human promoters. Sixteen TATA elements derived from the TATA Box motif, TATAWAWN, are classified into three distribution patterns: peak, bottom-peak, and bottom. Fourteen TATA extension sequences are predicted to be the new TATA Box elements due to their high motif factors, which indicate their statistical significance. Statistical analysis on the promoters of mice, zebrafish and drosophila melanogaster verifies seven of these elements. It is also observed that the distribution of TATA elements on the promoters of housekeeping genes are very similar with their distribution on the promoters of tissue specific genes in human. CONCLUSION: The dedicated statistical analysis on TATA box and its extension sequences yields new TATA elements. The statistical significance of these elements has been verified on random data sets by calculating their p values

    Expression Analysis of the NLRP Gene Family Suggests a Role in Human Preimplantation Development

    Get PDF
    Background: The NLRP (Nucleotide-binding oligomerization domain, Leucine rich Repeat and Pyrin domain containing) family, also referred to as NALP family, is well known for its roles in apoptosis and inflammation. Several NLRPs have been indicated as being involved in reproduction as well. Methodology: We studied, using the unique human gametes and embryo materials, the expression of the NLRP family in human gametes and preimplantation embryos at different developmental stages, and compared the expression levels between normal and abnormal embryos using real-time PCR. Principal Findings: Among 14 members of the NLRP family, twelve were detected in human oocytes and preimplantation embryos, whereas seven were detected in spermatozoa. Eight NLRPs (NLRP4, 5, 8, 9, 11, 12, 13, and 14) showed a similar expression pattern: their expression levels were high in oocytes and then decreased progressively in embryos, resulting in a very low level in day 5 embryos. However, NLRP2 and NLRP7 showed a different expression pattern: their expression decreased from oocytes to the lowest level by day 3, but increased again by day 5. The expression levels of NLRP5, 9, and 12 were lower in day 1 abnormal embryos but higher in day3 and day5 arrested embryos, when compared with normal embryos at the same stages. NLRP7 was down-regulated in day 1 and day 5 abnormal embryos but over-expressed in day3 arrested embryos

    Hypoxia and oxidative stress in breast cancer: Tumour hypoxia – therapeutic considerations

    Get PDF
    Conclusive research has shown that regions of acute/chronic hypoxia, which exist within the majority of solid tumours, have a profound influence on the therapeutic outcome of cancer chemotherapy and radiotherapy and are a strong prognostic factor of disease progression and survival. A strong argument therefore exists for assessing the hypoxic fraction of tumours, prior to patient treatment, and to tailor this treatment accordingly. Tumour hypoxia also provides a powerful physiological stimulus that can be exploited as a tumour-specific condition, allowing for the rationale design of hypoxia-activated anticancer drugs or novel hypoxia-regulated gene therapy strategies

    Assessment of clusters of transcription factor binding sites in relationship to human promoter, CpG islands and gene expression

    Get PDF
    BACKGROUND: Gene expression is regulated mainly by transcription factors (TFs) that interact with regulatory cis-elements on DNA sequences. To identify functional regulatory elements, computer searching can predict TF binding sites (TFBS) using position weight matrices (PWMs) that represent positional base frequencies of collected experimentally determined TFBS. A disadvantage of this approach is the large output of results for genomic DNA. One strategy to identify genuine TFBS is to utilize local concentrations of predicted TFBS. It is unclear whether there is a general tendency for TFBS to cluster at promoter regions, although this is the case for certain TFBS. Also unclear is the identification of TFs that have TFBS concentrated in promoters and to what level this occurs. This study hopes to answer some of these questions. RESULTS: We developed the cluster score measure to evaluate the correlation between predicted TFBS clusters and promoter sequences for each PWM. Non-promoter sequences were used as a control. Using the cluster score, we identified a PWM group called PWM-PCP, in which TFBS clusters positively correlate with promoters, and another PWM group called PWM-NCP, in which TFBS clusters negatively correlate with promoters. The PWM-PCP group comprises 47% of the 199 vertebrate PWMs, while the PWM-NCP group occupied 11 percent. After reducing the effect of CpG islands (CGI) against the clusters using partial correlation coefficients among three properties (promoter, CGI and predicted TFBS cluster), we identified two PWM groups including those strongly correlated with CGI and those not correlated with CGI. CONCLUSION: Not all PWMs predict TFBS correlated with human promoter sequences. Two main PWM groups were identified: (1) those that show TFBS clustered in promoters associated with CGI, and (2) those that show TFBS clustered in promoters independent of CGI. Assessment of PWM matches will allow more positive interpretation of TFBS in regulatory regions

    A comprehensive functional analysis of tissue specificity of human gene expression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In recent years, the maturation of microarray technology has allowed the genome-wide analysis of gene expression patterns to identify tissue-specific and ubiquitously expressed ('housekeeping') genes. We have performed a functional and topological analysis of housekeeping and tissue-specific networks to identify universally necessary biological processes, and those unique to or characteristic of particular tissues.</p> <p>Results</p> <p>We measured whole genome expression in 31 human tissues, identifying 2374 housekeeping genes expressed in all tissues, and genes uniquely expressed in each tissue. Comprehensive functional analysis showed that the housekeeping set is substantially larger than previously thought, and is enriched with vital processes such as oxidative phosphorylation, ubiquitin-dependent proteolysis, translation and energy metabolism. Network topology of the housekeeping network was characterized by higher connectivity and shorter paths between the proteins than the global network. Ontology enrichment scoring and network topology of tissue-specific genes were consistent with each tissue's function and expression patterns clustered together in accordance with tissue origin. Tissue-specific genes were twice as likely as housekeeping genes to be drug targets, allowing the identification of tissue 'signature networks' that will facilitate the discovery of new therapeutic targets and biomarkers of tissue-targeted diseases.</p> <p>Conclusion</p> <p>A comprehensive functional analysis of housekeeping and tissue-specific genes showed that the biological function of housekeeping and tissue-specific genes was consistent with tissue origin. Network analysis revealed that tissue-specific networks have distinct network properties related to each tissue's function. Tissue 'signature networks' promise to be a rich source of targets and biomarkers for disease treatment and diagnosis.</p

    Hypoxia Alters Cell Cycle Regulatory Protein Expression and Induces Premature Maturation of Oligodendrocyte Precursor Cells

    Get PDF
    Periventricular white matter injury (PWMI) is a common form of brain injury sustained by preterm infants. A major factor that predisposes to PWMI is hypoxia. Because oligodendrocytes (OLs) are responsible for myelination of axons, abnormal OL development or function may affect brain myelination. At present our understanding of the influences of hypoxia on OL development is limited. To examine isolated effects of hypoxia on OLs, we examined the influences of hypoxia on OL development in vitro.Cultures of oligodendrocyte precursor cells (OPCs) were prepared from mixed glial cultures and were 99% pure. OPCs were maintained at 21% O(2) or hypoxia (1% or 4% O(2)) for up to 7 days. We observed that 1% O(2) lead to an increase in the proportion of myelin basic protein (MBP)-positive OLs after 1 week in culture, and a decrease in the proportion of platelet-derived growth factor receptor alpha (PDGFRalpha)-positive cells suggesting premature OL maturation. Increased expression of the cell cycle regulatory proteins p27(Kip1) and phospho-cdc2, which play a role in OL differentiation, was seen as well.These results show that hypoxia interferes with the normal process of OL differentiation by inducing premature OPC maturation

    Natural Terpenes Prevent Mitochondrial Dysfunction, Oxidative Stress and Release of Apoptotic Proteins during Nimesulide-Hepatotoxicity in Rats

    Get PDF
    Nimesulide, an anti-inflammatory and analgesic drug, is reported to cause severe hepatotoxicity. In this study, molecular mechanisms involved in deranged oxidant-antioxidant homeostasis and mitochondrial dysfunction during nimesulide-induced hepatotoxicity and its attenuation by plant derived terpenes, camphene and geraniol has been explored in male Sprague-Dawley rats. Hepatotoxicity due to nimesulide (80 mg/kg BW) was evident from elevated SGPT, SGOT, bilirubin and histo-pathological changes. Antioxidants and key redox enzymes (iNOS, mtNOS, Cu/Zn-SOD, Mn-SOD, GPx and GR) were altered significantly as assessed by their mRNA expression, Immunoblot analysis and enzyme activities. Redox imbalance along with oxidative stress was evident from decreased NAD(P)H and GSH (56% and 74% respectively; P<0.001), increased superoxide and secondary ROS/RNS generation along with oxidative damage to cellular macromolecules. Nimesulide reduced mitochondrial activity, depolarized mitochondria and caused membrane permeability transition (MPT) followed by release of apoptotic proteins (AIF; apoptosis inducing factor, EndoG; endonuclease G, and Cyto c; cytochrome c). It also significantly activated caspase-9 and caspase-3 and increased oxidative DNA damage (level of 8-Oxoguanine glycosylase; P<0.05). A combination of camphene and geraniol (CG; 1∶1), when pre-administered in rats (10 mg/kg BW), accorded protection against nimesulide hepatotoxicity in vivo, as evident from normalized serum biomarkers and histopathology. mRNA expression and activity of key antioxidant and redox enzymes along with oxidative stress were also normalized due to CG pre-treatment. Downstream effects like decreased mitochondrial swelling, inhibition in release of apoptotic proteins, prevention of mitochondrial depolarization along with reduction in oxidized NAD(P)H and increased mitochondrial electron flow further supported protective action of selected terpenes against nimesulide toxicity. Therefore CG, a combination of natural terpenes prevented nimesulide induced cellular damage and ensuing hepatotoxicity

    Predicting Housekeeping Genes Based on Fourier Analysis

    Get PDF
    Housekeeping genes (HKGs) generally have fundamental functions in basic biochemical processes in organisms, and usually have relatively steady expression levels across various tissues. They play an important role in the normalization of microarray technology. Using Fourier analysis we transformed gene expression time-series from a Hela cell cycle gene expression dataset into Fourier spectra, and designed an effective computational method for discriminating between HKGs and non-HKGs using the support vector machine (SVM) supervised learning algorithm which can extract significant features of the spectra, providing a basis for identifying specific gene expression patterns. Using our method we identified 510 human HKGs, and then validated them by comparison with two independent sets of tissue expression profiles. Results showed that our predicted HKG set is more reliable than three previously identified sets of HKGs

    Absorption and mobility of foliar-applied boron in soybean as affected by plant boron status and application as a polyol complex

    Get PDF
    In the present study (i) the impact of plant Boron (B) status on foliar B absorption and (ii) the effect of B complexation with polyols (sorbitol or mannitol) on B absorption and translocation was investigated. Soybean (Glycine max (L.) Meer.) plants grown in nutrient solution containing 0 μM, 10 μM, 30 μM or 100 μM 11B labelled boric acid (BA) were treated with 50 mM 10B labelled BA applied to the basal parts of two leaflets of one leaf, either pure or in combination with 500 mM sorbitol or mannitol. After one week, 10B concentrations in different plant parts were determined. In B deficient leaves (0 μM 11B), 10B absorption was significantly lower than in all other treatments (9.7% of the applied dose vs. 26%–32%). The application of BA in combination with polyols increased absorption by 18–25% as compared to pure BA. The absolute amount of applied 10B moving out of the application zone was lowest in plants with 0 μM 11B supply (1.1% of the applied dose) and highest in those grown in 100 μM 11B (2.8%). The presence of sorbitol significantly decreased the share of mobile 10B in relation to the amount absorbed. The results suggest that 11B deficiency reduces the permeability of the leaf surface for BA. The addition of polyols may increase 10B absorption, but did not improve 10B distribution within the plant, which was even hindered when applied a sorbitol complex

    Selection of suitable reference genes for accurate normalization of gene expression profile studies in non-small cell lung cancer

    Get PDF
    BACKGROUND: In real-time RT quantitative PCR (qPCR) the accuracy of normalized data is highly dependent on the reliability of the reference genes (RGs). Failure to use an appropriate control gene for normalization of qPCR data may result in biased gene expression profiles, as well as low precision, so that only gross changes in expression level are declared statistically significant or patterns of expression are erroneously characterized. Therefore, it is essential to determine whether potential RGs are appropriate for specific experimental purposes. Aim of this study was to identify and validate RGs for use in the differentiation of normal and tumor lung expression profiles. METHODS: A meta-analysis of lung cancer transcription profiles generated with the GeneChip technology was used to identify five putative RGs. Their consistency and that of seven commonly used RGs was tested by using Taqman probes on 18 paired normal-tumor lung snap-frozen specimens obtained from non-small-cell lung cancer (NSCLC) patients during primary curative resection. RESULTS: The 12 RGs displayed showed a wide range of Ct values: except for rRNA18S (mean 9.8), the mean values of all the commercial RGs and ESD ranged from 19 to 26, whereas those of the microarray-selected RGs (BTF-3, YAP1, HIST1H2BC, RPL30) exceeded 26. RG expression stability within sample populations and under the experimental conditions (tumour versus normal lung specimens) was evaluated by: (1) descriptive statistic; (2) equivalence test; (3) GeNorm applet. All these approaches indicated that the most stable RGs were POLR2A, rRNA18S, YAP1 and ESD. CONCLUSION: These data suggest that POLR2A, rRNA18S, YAP1 and ESD are the most suitable RGs for gene expression profile studies in NSCLC. Furthermore, they highlight the limitations of commercial RGs and indicate that meta-data analysis of genome-wide transcription profiling studies may identify new RGs
    corecore