754 research outputs found

    Dissipative transformation of non-nucleated dwarf galaxies into nucleated systems

    Full text link
    Recent photometric observations by the {\it Hubble Space Telescope (HST)} have revealed the physical properties of stellar galactic nuclei in nucleated dwarf galaxies in the Virgo cluster of galaxies. In order to elucidate the formation processes of nucleated dwarfs, we numerically investigate gas dynamics, star formation, and chemical evolution within the central 1 kpc of gas disks embedded within the galactic stellar components of non-nucleated dwarfs. We find that high density, compact stellar systems can be formed in the central regions of dwarfs as a result of dissipative, repeated merging of massive stellar and gaseous clumps developed from nuclear gaseous spiral arms as a result of local gravitational instability. The central stellar components are found to have stellar masses which are typically  ~5% of their host dwarfs and show very flattened shapes, rotational kinematics, and central velocity dispersions significantly smaller than those of their host dwarfs. We also find that more massive dwarfs can develop more massive, more metal-rich, and higher density stellar systems in their central regions, because star formation and chemical enrichment proceed more efficiently owing to the less dramatic suppression of star formation by supernovae feedback effects in more massive dwarfs. Based on these results, we suggest that gas-rich, non-nucleated dwarfs can be transformed into nucleated ones as a result of dissipative gas dynamics in their central regions. We discuss the origin of the observed correlations between physical properties of stellar galactic nuclei and those of their host galaxies.Comment: 13 pages, 4 figures (1 color), ApJL in pres

    Spatially Resolved Spectroscopy of Starburst and Post-Starburst Galaxies in The Rich z~0.55 Cluster CL0016+16

    Full text link
    We have used the Low Resolution Imaging Spectrograph (LRIS) on the W.M. Keck I telescope to obtain spatially resolved spectroscopy of a small sample of six post-starburst and three dusty-starburst galaxies in the rich cluster CL0016+16 at z=0.55. We use this to measure radial profiles of the Hdelta and OII3727 lines which are diagnostic probes of the mechanisms that give rise to the abrupt changes in star-formation rates in these galaxies. In the post-starburst sample we are unable to detect any radial gradients in the Hdelta line equivalent width - although one galaxy exhibits a gradient from one side of the galaxy to the other. The absence of Hdelta gradients in these galaxies is consistent with their production via interaction with the intra-cluster medium, however, our limited spatial sampling prevents us from drawing robust conclusions. All members of the sample have early type morphologies, typical of post-starburst galaxies in general, but lack the high incidence of tidal tails and disturbances seen in local field samples. This argues against a merger origin and adds weight to a scenario where truncation by the intra-cluster medium is at work. The post-starburst spectral signature is consistent over the radial extent probed with no evidence of OII3727 emission and strong Hdelta absorption at all radii i.e. the post-starburst classification is not an aperture effect. In contrast the dusty-starburst sample shows a tendency for a central concentration of OII3727 emission. This is most straightforwardly interpreted as the consequence of a central starburst. However, other possibilities exist such as a non-uniform dust distribution (which is expected in such galaxies) and/or a non-uniform starburst age distribution. The sample exhibit late type and irregular morphologies.Comment: accepted for publication in PAS

    Galaxy threshing and the formation of ultra-compact dwarf galaxies

    Full text link
    Recent spectroscopic and morphological observational studies of galaxies around NGC 1399 in the Fornax Cluster (Drinkwater et al. 2000b) have discovered several `ultra-compact dwarf' galaxies with intrinsic sizes of ∼\sim 100 pc and absolute BB band magnitudes ranging from -13 to -11 mag. In order to elucidate the origin of these enigmatic objects, we perform numerical simulations on the dynamical evolution of nucleated dwarf galaxies orbiting NGC 1399 and suffering from its strong tidal gravitational field. Adopting a plausible scaling relation for dwarf galaxies, we find that the outer stellar components of a nucleated dwarf are totally removed. This is due to them being tidally stripped over the course of several passages past the central region of NGC 1399. The nucleus, however, manages to survive. We also find that the size and luminosity of the remnant are similar to those observed for ultra-compact dwarf galaxies, if the simulated precursor nucleated dwarf has a mass of ∼\sim 10810^8 M⊙M_{\odot}. These results suggest that ultra-compact dwarf galaxies could have previously been more luminous dwarf spheroidal or elliptical galaxies with rather compact nuclei.Comment: 9 pages 4 figures,2001, ApJL, 552, 10

    The Stellar Populations of Low-redshift Clusters

    Full text link
    We present some preliminary results from an on-going study of the evolution of stellar populations in rich clusters of galaxies. This sample contains core line-strength measurements from 183 galaxies with b_J <= 19.5 from four clusters with ~0.04. Using predictions from stellar population models to compare with our measured line strengths we can derive relative luminosity-weighted mean ages and metallicities for the stellar populations in each of our clusters. We also investigate the Mgb'-sigma and Hbeta_G'-sigma scaling relations. We find that, consistent with previous results, Mgb' is correlated with sigma, the likely explanation being that larger galaxies are better at retaining their heavier elements due to their larger potentials. Hbeta', on the other hand, we find to be anti-correlated with sigma. This result implies that the stellar populations in larger galaxies are older than in smaller galaxies.Comment: 3 pages, 2 figures, to appear in the Proceedings of IAU Colloquium 195: "Outskirts of Galaxy Clusters: intense life in the suburbs", Torino Italy, March 12-16 200

    The Large Area Radio Galaxy Evolution Spectroscopic Survey (LARGESS): survey design, data catalogue and GAMA/WiggleZ spectroscopy

    Get PDF
    Š 2016 The Authors. We present the Large Area Radio Galaxy Evolution Spectroscopic Survey (LARGESS), a spectroscopic catalogue of radio sources designed to include the full range of radio AGN populations out to redshift z ~ 0.8. The catalogue covers ~800 deg 2 of sky, and provides optical identifications for 19 179 radio sources from the 1.4 GHz Faint Images of the Radio Sky at Twenty-cm (FIRST) survey down to an optical magnitude limit of i mod < 20.5 in Sloan Digital Sky Survey (SDSS) images. Both galaxies and point-like objects are included, and no colour cuts are applied. In collaboration with the WiggleZ and Galaxy And Mass Assembly (GAMA) spectroscopic survey teams, we have obtained new spectra for over 5000 objects in the LARGESS sample. Combining these new spectra with data from earlier surveys provides spectroscopic data for 12 329 radio sources in the survey area, of which 10 856 have reliable redshifts. 85 per cent of the LARGESS spectroscopic sample are radio AGN (median redshift z = 0.44), and 15 per cent are nearby star-forming galaxies (median z = 0.08). Low-excitation radio galaxies (LERGs) comprise the majority (83 per cent) of LARGESS radio AGN at z < 0.8, with 12 per cent being high-excitation radio galaxies (HERGs) and 5 per cent radioloud QSOs. Unlike the more homogeneous LERG and QSO sub-populations, HERGs are a heterogeneous class of objects with relatively blue optical colours and a wide dispersion in mid-infrared colours. This is consistent with a picture in which most HERGs are hosted by galaxies with recent or ongoing star formation as well as a classical accretion disc

    Local and Remote Forcing of Denitrification in the Northeast Pacific for the Last 2,000 Years

    Full text link
    Sedimentary δ15N (δ15Nsed) has been widely applied as a proxy for water column denitrification. When combined with additional productivity proxies, it provides insights into the driving forces behind long‐term changes in water column oxygenation. High‐resolution (~2 years) δ15Nsed and productivity proxy records (total organic carbon [TOC], Si/Ti, and Ca/Ti) from Santa Barbara Basin, California, were generated from a well‐dated Kasten core (SPR0901‐03KC). These records reveal the relationship between Southern California upwelling and oxygenation over the past 2,000 years. Inconsistencies between Si/Ti (coastal upwelling proxy) and TOC (total export productivity proxy) suggest wind curl upwelling influenced Southern California primary productivity, especially during intervals of weak coastal upwelling. Coherence between δ15Nsed, TOC, and drought indicators supports a local control of δ15Nsed by atmospheric circulation, as persistent northerly winds associated with an intensified North Pacific High pressure cell lead to enhanced coastal upwelling. In the northeast Pacific, δ15Nsed is used as a water mass tracer of denitrification signals transported north from the eastern tropical North Pacific (ETNP) via the California Undercurrent. A 1,200‐year δ15Nsed record from the Pescadero slope, Gulf of California, lies between denitrifying subsurface waters in the ETNP and Southern California. During the Medieval Climate Anomaly, coherence between Pescadero and Santa Barbara Basin δ15Nsed indicates connections between ETNP and Southern California on centennial timescales. Yet an out‐of‐phase relationship occurred when the Aleutian Low was anomalously strong during the Little Ice Age. We suggest intensified nutrient‐rich subarctic water advection might have transported high‐15N nitrate into Southern California when the California Undercurrent and ETNP denitrification weakened.Key PointsWind curl upwelling contributes to Southern California primary productivity, especially during weak coastal upwelling intervalsIntensified NPH leads to stronger denitrification through enhanced coastal upwelling and reduced rainfallCalifornia receives relatively more tropical water during the Medieval Climate Anomaly and more subarctic water during the Little Ice AgePeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151806/1/palo20779_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151806/2/palo20779.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151806/3/palo20779-sup-0001-2019PA003577-SI.pd
    • …
    corecore