795 research outputs found

    Progress on indium and barium single ion optical frequency standards

    Full text link
    We report progress on 115In+ and 137Ba+ single ion optical frequency standards using all solid-state sources. Both are free from quadrupole field shifts and together enable a search for drift in fundamental constants.Comment: 2 pages, 1 figure, submitted to IEEE/LEOS Summer 2005 Topicals conference proceeding

    The Iowa Homemaker vol.41, no.2

    Get PDF
    Tips Add Ease In Traveling, Karen Williams, page 4 May Is Raining Roses, Marilynn Bratten, page 6 “Instant” Palace Is Rare, Sharon Sherman, page 8 Flowers Range from Gardenias to New Glamellias, Anne Collison, page 10 Bells Ring at ISU, Jo Ann Fridley, page 11 Duo Drape Gowns, Anne Miller, Gail Wallen, page 12 Look at Latest, Karen Nielsen, page 1

    Passion fruit culture in Hawaii

    Get PDF

    DoubleMod and SingleMod: Simple Randomized Secret-Key Encryption with Bounded Homomorphicity

    Get PDF
    An encryption relation f Z Z with decryption function f 1 is “group-homomorphic” if, for any suitable plaintexts x1 and x2, x1+x2 = f 1( f (x1)+f (x2)). It is “ring-homomorphic” if furthermore x1x2 = f 1( f (x1) f (x2)); it is “field-homomorphic” if furthermore 1=x1 = f 1( f (1=x1)). Such relations would support oblivious processing of encrypted data. We propose a simple randomized encryption relation f over the integers, called DoubleMod, which is “bounded ring-homomorphic” or what some call ”somewhat homomorphic.” Here, “bounded” means that the number of additions and multiplications that can be performed, while not allowing the encrypted values to go out of range, is limited (any pre-specified bound on the operation-count can be accommodated). Let R be any large integer. For any plaintext x 2 ZR, DoubleMod encrypts x as f (x) = x + au + bv, where a and b are randomly chosen integers in some appropriate interval, while (u; v) is the secret key. Here u > R2 is a large prime and the smallest prime factor of v exceeds u. With knowledge of the key, but not of a and b, the receiver decrypts the ciphertext by computing f 1(y) = (y mod v) mod u. DoubleMod generalizes an independent idea of van Dijk et al. 2010. We present and refine a new CCA1 chosen-ciphertext attack that finds the secret key of both systems (ours and van Dijk et al.’s) in linear time in the bit length of the security parameter. Under a known-plaintext attack, breaking DoubleMod is at most as hard as solving the Approximate GCD (AGCD) problem. The complexity of AGCD is not known. We also introduce the SingleMod field-homomorphic cryptosystems. The simplest SingleMod system based on the integers can be broken trivially. We had hoped, that if SingleMod is implemented inside non-Euclidean quadratic or higher-order fields with large discriminants, where GCD computations appear di cult, it may be feasible to achieve a desired level of security. We show, however, that a variation of our chosen-ciphertext attack works against SingleMod even in non-Euclidean fields

    Concurrent invasions by European starlings (Sturnus vulgaris) suggest selection on shared genomic regions even after genetic bottlenecks

    Get PDF
    A species’ success during the invasion of new areas hinges on an interplay between the demographic processes common to invasions and the specific ecological context of the novel environment. Evolutionary genetic studies of invasive species can investigate how genetic bottlenecks and ecological conditions shape genetic variation in invasions, and our study pairs two invasive populations that are hypothesized to be from the same source population to compare how each population evolved during and after introduction. Invasive European Starlings (Sturnus vulgaris) established populations in both Australia and North America in the 19th century. Here, we compare whole-genome sequences among native and independently introduced European Starling populations to determine how demographic processes interact with rapid evolution to generate similar genetic patterns in these recent and replicated invasions. Demographic models indicate that both invasive populations experienced genetic bottlenecks as expected based on invasion history, and we find that specific genomic regions have differentiated even on this short evolutionary timescale. Despite genetic bottlenecks, we suggest that genetic drift alone cannot explain differentiation in at least two of these regions. The demographic boom intrinsic to many invasions as well as potential inversions may have led to high population-specific differentiation, although the patterns of genetic variation are also consistent with the hypothesis that this infamous and highly mobile invader adapted to novel selection (e.g., extrinsic factors). We use targeted sampling of replicated invasions to identify and evaluate support for multiple, interacting evolutionary mechanisms that lead to differentiation during the invasion process
    • 

    corecore