84 research outputs found

    An integrated biochemical prediction model of all-cause mortality in patients undergoing lower extremity bypass surgery for advanced peripheral artery disease

    Get PDF
    BackgroundPatients with advanced peripheral artery disease (PAD) have a high prevalence of cardiovascular (CV) risk factors and shortened life expectancy. However, CV risk factors poorly predict midterm (<5 years) mortality in this population. This study tested the hypothesis that baseline biochemical parameters would add clinically meaningful predictive information in patients undergoing lower extremity bypass operations.MethodsThis was a prospective cohort study of patients with clinically advanced PAD undergoing lower extremity bypass surgery. The Cox proportional hazard model was used to assess the main outcome of all-cause mortality. A clinical model was constructed with known CV risk factors, and the incremental value of the addition of clinical chemistry, lipid assessment, and a panel of 11 inflammatory parameters was investigated using the C statistic, the integrated discrimination improvement index, and Akaike information criterion.ResultsThe study monitored 225 patients for a median of 893 days (interquartile range, 539-1315 days). In this study, 50 patients (22.22%) died during the follow-up period. By life-table analysis (expressed as percent surviving ± standard error), survival at 1, 2, 3, 4, and 5 years, respectively, was 90.5% ± 1.9%, 83.4% ± 2.5%, 77.5% ± 3.1%, 71.0% ± 3.8%, and 65.3% ± 6.5%. Compared with survivors, decedents were older, diabetic, had extant coronary artery disease, and were more likely to present with critical limb ischemia as their indication for bypass surgery (P < .05). After adjustment for the above, clinical chemistry and inflammatory parameters significant (hazard ratio [95% confidence interval]) for all-cause mortality were albumin (0.43 [0.26-0.71]; P = .001), estimated glomerular filtration rate (0.98 [0.97-0.99]; P = .023), high-sensitivity C-reactive protein (hsCRP; 3.21 [1.21-8.55]; P = .019), and soluble vascular cell adhesion molecule (1.74 [1.04-2.91]; P = .034). Of the inflammatory molecules investigated, hsCRP proved most robust and representative of the integrated inflammatory response. Albumin, eGFR, and hsCRP improved the C statistic and integrated discrimination improvement index beyond that of the clinical model and produced a final C statistic of 0.82.ConclusionsA risk prediction model including traditional risk factors and parameters of inflammation, renal function, and nutrition had excellent discriminatory ability in predicting all-cause mortality in patients with clinically advanced PAD undergoing bypass surgery

    A single nucleotide polymorphism in the p27Kip1 gene is associated with primary patency of lower extremity vein bypass grafts

    Get PDF
    ObjectiveFactors responsible for the variability in outcomes after lower extremity vein bypass grafting (LEVBG) are poorly understood. Recent evidence has suggested that a single nucleotide polymorphism (SNP) in the promoter region of the p27Kip1 gene, a cell-cycle regulator, is associated with coronary in-stent restenosis. We hypothesized an association with vein graft patency.MethodsThis was a retrospective genetic association study nested within a prospective cohort of 204 patients from three referral centers undergoing LEVBG for claudication or critical ischemia. The main outcome measure was primary vein graft patency.ResultsAll patients were followed up for a minimum of 1 year with duplex graft surveillance (median follow-up, 893 days; interquartile range, 539-1315). Genomic DNA was isolated and SNP analysis for the p27Kip1-838C>A variants was performed. Allele frequencies were correlated with graft outcome using survival analysis and Cox proportional hazards modeling. The p27Kip1-838C>A allele frequencies observed were CA, 53%; CC, 30%; and AA, 17%, satisfying Hardy-Weinberg equilibrium. Race (P = .025) and history of coronary artery disease (P = .027) were different across the genotypes; all other baseline variables were similar. Primary graft patency was greater among patients with the -838AA genotype (75% AA vs 55% CA/CC at 3 years; P = .029). In a Cox proportional hazards model including age, sex, race, diabetes, critical limb ischemia, redo (vs primary) bypass, vein type, and baseline C-reactive protein level, the p27Kip1-838AA genotype was significantly associated with higher graft patency (hazard ratio for failure, 0.4; 95% confidence interval, 0.17-0.93). Genotype was also associated with early (0-1 month) changes in graft lumen diameter by ultrasound imaging.ConclusionsThese data suggest that the p27Kip1-838C>A SNP is associated with LEVBG patency and, together with previous reports, underscore a central role for p27Kip1 in the generic response to vascular injury

    Excellent outcomes of laparoscopic esophagomyotomy for achalasia in patients older than 60 years of age

    Get PDF
    The effectiveness of an esophagomyotomy for dysphagia in elderly patients with achalasia has been questioned. This study was designed to provide an answer. A total of 162 consecutive patients with achalasia who had a laparoscopic myotomy and Dor fundoplication and who were available for follow-up interview were divided by age: &lt;60 years (range, 14–59; 118 patients), and ≥60 years (range, 60–93; 44 patients). Primary outcome measures were severity of dysphagia, regurgitation, heartburn, and chest pain before and after the operation as assessed on a four-point Likert scale, and the need for postoperative dilatation or revisional surgery. Follow-up averaged 64 months. Older patients had less dysphagia (mean score 3.6 vs. 3.9; P &lt; 0.01) and less chest pain (1.0 vs. 1.8; P &lt; 0.01). Regurgitation (3.0 vs. 3.2; P = not significant (NS)) and heartburn (1.6 vs. 2.0, P = NS) were similar. Older patients were no different in degree of esophageal dilation, manometric findings, number of previous pneumatic dilatations, or previous botulinum toxin therapy. None of the older patients had previously had an esophagomyotomy, whereas 14% of younger patients had (P &lt; 0.01). After laparoscopic myotomy, older patients had better relief of dysphagia (mean score 1.0 vs 1.6; P &lt; 0.01), less heartburn (0.8 vs. 1.1; P = 0.03), and less chest pain (0.2 vs. 0.8, P &lt; 0.01). Complication rates were similar. Older patients did not require more postoperative dilatations (22 patients vs. 10 patients; P = 0.7) or revisional surgery for recurrent or persistent symptoms (3 vs. 1 patients; P = 0.6). Satisfaction scores did not differ, and more than 90% of patients in both groups said in retrospect they would have undergone the procedure if they had known beforehand how it would turn out. This retrospective review with long follow-up supports laparoscopic esophagomyotomy as first-line therapy in older patients with achalasia. They appeared to benefit even more than younger patients

    Gene duplication and fragmentation in the zebra finch major histocompatibility complex

    Get PDF
    BACKGROUND: Due to its high polymorphism and importance for disease resistance, the major histocompatibility complex (MHC) has been an important focus of many vertebrate genome projects. Avian MHC organization is of particular interest because the chicken Gallus gallus, the avian species with the best characterized MHC, possesses a highly streamlined minimal essential MHC, which is linked to resistance against specific pathogens. It remains unclear the extent to which this organization describes the situation in other birds and whether it represents a derived or ancestral condition. The sequencing of the zebra finch Taeniopygia guttata genome, in combination with targeted bacterial artificial chromosome (BAC) sequencing, has allowed us to characterize an MHC from a highly divergent and diverse avian lineage, the passerines. RESULTS: The zebra finch MHC exhibits a complex structure and history involving gene duplication and fragmentation. The zebra finch MHC includes multiple Class I and Class II genes, some of which appear to be pseudogenes, and spans a much more extensive genomic region than the chicken MHC, as evidenced by the presence of MHC genes on each of seven BACs spanning 739 kb. Cytogenetic (FISH) evidence and the genome assembly itself place core MHC genes on as many as four chromosomes with TAP and Class I genes mapping to different chromosomes. MHC Class II regions are further characterized by high endogenous retroviral content. Lastly, we find strong evidence of selection acting on sites within passerine MHC Class I and Class II genes. CONCLUSION: The zebra finch MHC differs markedly from that of the chicken, the only other bird species with a complete genome sequence. The apparent lack of synteny between TAP and the expressed MHC Class I locus is in fact reminiscent of a pattern seen in some mammalian lineages and may represent convergent evolution. Our analyses of the zebra finch MHC suggest a complex history involving chromosomal fission, gene duplication and translocation in the history of the MHC in birds, and highlight striking differences in MHC structure and organization among avian lineages
    corecore