6 research outputs found

    Treatment Guidance for Patients With Lung Cancer During the Coronavirus 2019 Pandemic

    Get PDF
    The global coronavirus disease 2019 pandemic continues to escalate at a rapid pace inundating medical facilities and creating substantial challenges globally. The risk of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in patients with cancer seems to be higher, especially as they are more likely to present with an immunocompromised condition, either from cancer itself or from the treatments they receive. A major consideration in the delivery of cancer care during the pandemic is to balance the risk of patient exposure and infection with the need to provide effective cancer treatment. Many aspects of the SARS-CoV-2 infection currently remain poorly characterized and even less is known about the course of infection in the context of a patient with cancer. As SARS-CoV-2 is highly contagious, the risk of infection directly affects the cancer patient being treated, other cancer patients in close proximity, and health care providers. Infection at any level for patients or providers can cause considerable disruption to even the most effective treatment plans. Lung cancer patients, especially those with reduced lung function and cardiopulmonary comorbidities are more likely to have increased risk and mortality from coronavirus disease 2019 as one of its common manifestations is as an acute respiratory illness. The purpose of this manuscript is to present a practical multidisciplinary and international overview to assist in treatment for lung cancer patients during this pandemic, with the caveat that evidence is lacking in many areas. It is expected that firmer recommendations can be developed as more evidence becomes available

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE Δ4 allele

    Role of antibiotics and probiotics in the management of inflammatory bowel disease

    No full text

    New insights into the genetic etiology of Alzheimer’s disease and related dementias

    No full text
    Characterization of the genetic landscape of Alzheimer’s disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/‘proxy’ AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE Δ4 allele. © 2022, The Author(s)

    Pan-cancer analysis of whole genomes

    No full text
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale. Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter; identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation; analyses timings and patterns of tumour evolution; describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity; and evaluates a range of more-specialized features of cancer genomes
    corecore