9,629 research outputs found

    Quartic Gauge Couplings from K3 Geometry

    Full text link
    We show how certain F^4 couplings in eight dimensions can be computed using the mirror map and K3 data. They perfectly match with the corresponding heterotic one-loop couplings, and therefore this amounts to a successful test of the conjectured duality between the heterotic string on T^2 and F-theory on K3. The underlying quantum geometry appears to be a 5-fold, consisting of a hyperk"ahler 4-fold fibered over a IP^1 base. The natural candidate for this fiber is the symmetric product Sym^2(K3). We are lead to this structure by analyzing the implications of higher powers of E_2 in the relevant Borcherds counting functions, and in particular the appropriate generalizations of the Picard-Fuchs equations for the K3.Comment: 32 p, harvmac; One footnote on page 11 extended; results unchanged; Version subm. to ATM

    Prepotentials from Symmetric Products

    Get PDF
    We investigate the prepotential that describes certain F^4 couplings in eight dimensional string compactifications, and show how they can be computed from the solutions of inhomogenous differential equations. These appear to have the form of the Picard-Fuchs equations of a fibration of Sym^2(K3) over P^1. Our findings give support to the conjecture that the relevant geometry which underlies these couplings is given by a five-fold.Comment: 19p, harvmac; One sign in eq. (A.2) change

    Quantification of contaminants associated with LDEF

    Get PDF
    The quantification of contaminants on the Long Duration Exposure Facility (LDEF) and associated hardware or tools is addressed. The purpose of this study was to provide a background data base for the evaluation of the surface of the LDEF and the effects of orbital exposure on that surface. This study necessarily discusses the change in the distribution of contaminants on the LDEF with time and environmental exposure. Much of this information may be of value for the improvement of contamination control procedures during ground based operations. The particulate data represents the results of NASA contractor monitoring as well as the results of samples collected and analyzed by the authors. The data from the tapelifts collected in the Space Shuttle Bay at Edwards Air Force Base and KSC are also presented. The amount of molecular film distributed over the surface of the LDEF is estimated based on measurements made at specific locations and extrapolated over the surface area of the LDEF. Some consideration of total amount of volatile-condensible materials available to form the resultant deposit is also presented. All assumptions underlying these estimates are presented along with the rationale for the conclusions. Each section is presented in a subsection for particles and another for molecular films

    Migration and generation of contaminants from launch through recovery: LDEF case history

    Get PDF
    It is possible to recreate the contamination history of the Long Duration Exposure Facility (LDEF) through an analysis of its contaminants and selective samples that were collected from surfaces with better documented exposure histories. This data was then used to compare estimates based on monitoring methods that were selected for the purpose of tracking LDEF's exposure to contaminants. The LDEF experienced much more contamination than would have been assumed based on the monitors. Work is still in progress but much of what was learned so far is already being used in the selection of materials and in the design of systems for space. Now experiments are being prepared for flight to resolve questions created by the discoveries on the LDEF. A summary of what was learned about LDEF contaminants over the first year since recovery and deintegration is presented. Over 35 specific conclusions in 5 contamination related categories are listed

    Determination of surface resistance and magnetic penetration depth of superconducting YBa2Cu3O(7-delta) thin films by microwave power transmission measurements

    Get PDF
    A novel waveguide power transmission measurement technique was developed to extract the complex conductivity of superconducting thin films at microwave frequencies. The microwave conductivity was taken of two laser ablated YBa2Cu3O(7-delta) thin films on LaAlO3 with transition temperatures of approx. 86.3 and 82 K, respectively, in the temperature range 25 to 300 K. From the conductivity values, the penetration depth was found to be approx. 0.54 and 0.43 micron, and the surface resistance (R sub s) to be approx. 24 and 36 micro-Ohms at 36 GHz and 76 K for the two films under consideration. The R sub s values were compared with those obtained from the change in the Q-factor of a 36 GHz Te sub 011-mode (OFHC) copper cavity by replacing one of its end walls with the superconducting sample. This technique allows noninvasive characterization of high transition temperature superconducting thin films at microwave frequencies

    Scientific Research with the Space Telescope: International Astronomical Union Colloquium No. 54

    Get PDF
    The application of the space telescope for extragalactic astronomy, planetary research, and stellar, interstellar, and galactic structural problems is discussed. Topics include investigations of small solar system objects, the physical characteristics of ionized gaseous nebulae, the central regions of active galaxies and quasars, problems of cosmology, and the distribution and composition of interstellar matter

    Optical properties of hydrogenated amorphous carbon films grown from methane plasma

    Get PDF
    A 30 kHz ac glow discharge formed from methane gas was used to grow carbon films on InP substrates. Both the growth rate, and the realitive Ar ion sputtering rate at 3 keV varied monotonically with deposition power. Results from the N-15 nuclear reaction profile experiments indicated a slight drop in the hydrogen concentration as more energy was dissipated in the ac discharge. Values for the index of refraction and extinction coefficient ranged from 1.721 to 1.910 and 0 to -0.188, respectively. Optical bandgaps as high as 2.34 eV were determined

    Plasma deposited diamondlike carbon on GaAs and InP

    Get PDF
    The properties of diamond like carbon films grown by RF flow discharge 30 kHz plasma using methane are reported. The Cls XPS line shape of films showed localized hybrid carbon bonds as low as 40 to as high as 95 percent. Infrared spectroscopy and N(15) nuclear reaction profiling data indicated 35 to 42 percent hydrogen, depending inversely on deposition temperature. The deposition rate of films on Si falls off exponentially with substrate temperature, and nucleation does not occur above 200 C on GaAs and InP. Optical data of the films showed bandgap values of 2.0 to 2.4 eV increasing monotonically with CH4 flow rate

    Generalized Complex Spherical Harmonics, Frame Functions, and Gleason Theorem

    Full text link
    Consider a finite dimensional complex Hilbert space \cH, with dim(\cH) \geq 3, define \bS(\cH):= \{x\in \cH \:|\: ||x||=1\}, and let \nu_\cH be the unique regular Borel positive measure invariant under the action of the unitary operators in \cH, with \nu_\cH(\bS(\cH))=1. We prove that if a complex frame function f : \bS(\cH)\to \bC satisfies f \in \cL^2(\bS(\cH), \nu_\cH), then it verifies Gleason's statement: There is a unique linear operator A: \cH \to \cH such that f(u)=f(u) = for every u \in \bS(\cH). AA is Hermitean when ff is real. No boundedness requirement is thus assumed on ff {\em a priori}.Comment: 9 pages, Accepted for publication in Ann. H. Poincar\'

    Complementarity of Kinematics and Geometry in General Relativity Theory

    Full text link
    Relations between kinematics, geometry and law of reference frame motion are considered. We show, that kinematical tensors define geometry up to a space functional arbitrariness when integrability condition for spin tensor is satisfied. Some aspects of geometrization principle and geometrical conventionalism of Poincare are discussed in a light of the obtained results.Comment: The paper is developed version of talk, presented at the conference RusGrav-2010 (June 2010, Moscow), submitted to GR
    corecore