625 research outputs found

    Addressing food insecurity in Papua New Guinea through food safety and sago cropping

    Get PDF
    Papua New Guinea (PNG) is known to have a large resource base of sago with over 1 million ha, as well as a high number of germplasm types of the Metroxylon species. The country’s food security status is very low and is primarily dependent on subsistence fresh garden produce as practiced by 85% of the population who are rural dwellers. Postharvest losses can be as high as 40% with little to no postharvest technology nor processing of foods done. Sago provides well for food security and sustains life in rural communities during disasters such as droughts, floods, and cyclones. The dilemma of sago being an underutilized crop in PNG is exacerbated by the introduction of new food crops, cash crops, and limited accessibility to cash to purchase other foods. Over the last 50 years, sago consumption has diminished as one of the major traditional food staples, from 16% to less than 10%. Neglect of sago is further due to food safety concerns about traditionally processed sago, in particular, the risk from sago hemolytic disease (SHD). For over30 years, SHD has been a food safety issue since it was first reported in 1973.Investigations on SHD highlight the serious need to improve on the hygiene and sanitation of the traditional postharvest processing and storage methods of sago starch in PNG. A set of hazard analysis and critical control point (HACCP) protocols has been developed for traditional processing of sago as a food safety measure to improve food safety for food security. While commercial cultivation is nonexistent, there is increased planting of the larger hapaxanthic, non-soboliferous sagospecies, Metroxylon salomonense Becc., in some nontraditional sago-consuming areas as a low-cost raw material source for roof thatching and other building materials. It is however a wasted opportunity for food security in these areas as the starch from the palm is not utilized. Current work in these areas promotes sago as a potential food source that can be harvested or processed into flour. This is to improve the food security status in areas of high population density, like island communities where land is scarce

    Urban agriculture, civil interfaces and moving beyond difference: the experiences of plot holders in Dublin and Belfast

    Get PDF
    Recent literature suggests that a “shared politics of place” attained through joint activities fosters social integration and provides people with a means to practise co-operation [Baumann, G., 1996. Contesting culture: discourses of identity in multi-ethnic London. Cambridge: Cambridge University Press; Sanjek, R., 1998. The future of us all: race & neighbourhood policies in New York City. Ithaca, NY: Cornell University Press; Sennett, R., 2012. Together: the rituals, pleasures and politics of cooperation. UK: Penguin]. Such a “shared politics of place” is most likely to occur in the context of public space conceptualised broadly as “the setting for everyday spatial behaviour of individuals and communities, emphasizing ordinary activities of citizens” [Lownsbrough, H. and Beunderman, J., 2007. Equally spaced? Public space and interaction between diverse communities. London: Demos, p. 8]. Here we explore one element of such public space – urban agriculture sites – with a view to identifying the extent to which a “shared politics of place” can be created and nurtured among the cultivating citizenry. The paper draws on data collected on allotment gardening sites in two urban contexts: Dublin (Ireland) and Belfast (Northern Ireland) over the period 2009–2013. We demonstrate the centrality of allotment cultivation to the generation of solidarity, mutuality and trust among participating citizens. Individuals engaging in allotment gardening in both Dublin and Belfast create and sustain civil interfaces – dismantling barriers, exchanging knowledge, challenging stereotypes, generating empathy and getting on with the business of simply getting on with their lives. The modus operandi of allotment gardening is predicated on a willingness to disregard social and ethno-national categorisations while on site. This is not to deny that such differences exist and persist, but allotments offer a “space of potential” where those differences are, at least for a time, rendered less salient

    Does fish larval dispersal differ between high and low latitudes?

    Get PDF
    Author Posting. © The Author(s), 2013. This is the author's version of the work. It is posted here by permission of The Royal Society for personal use, not for redistribution. The definitive version was published in Proceedings of the Royal Society B Biological Sciences 280 (2013): 20130327, doi:10.1098/rspb.2013.0327.Several factors lead to expectations that the scale of larval dispersal and population connectivity of marine animals differs with latitude. We examine this expectation for demersal shorefishes, including relevant mechanisms, assumptions, and evidence. We explore latitudinal differences in: 1) biological (e.g., species composition, spawning mode, pelagic larval duration (PLD)), 2) physical (e.g., water movement, habitat fragmentation), and 3) biophysical factors (primarily temperature, which could strongly affect development, swimming ability, or feeding). Latitudinal differences exist in taxonomic composition, habitat fragmentation, temperature, and larval swimming, and each could influence larval dispersal. Nevertheless, clear evidence for latitudinal differences in larval dispersal at the level of broad faunas is lacking. For example, PLD is strongly influenced by taxon, habitat, and geographic region, but no independent latitudinal trend is present in published PLD values. Any trends in larval dispersal may be obscured by a lack of appropriate information, or use of ‘off the shelf’ information that is biased with regard to the species assemblages in areas of concern. Biases may also be introduced from latitudinal differences in taxa or spawning modes, as well as limited latitudinal sampling. We suggest research to make progress on the question of latitudinal trends in larval dispersal.TK was supported by the Norwegian Research Council through project MENUII #190286. JML was supported by ARC Discovery Grant DP110100695. JEC and RRW were supported by the Partnership for the Interdisciplinary Study of Coastal Oceans, funded by The David and Lucille Packard Foundation and the Gordon and Betty Moore Foundation.2014-03-2

    Expression of ZIC genes in the development of the chick inner ear and nervous system

    Full text link
    ZIC genes, vertebrate homologues of the Drosophila pair-rule gene odd-paired ( opa ), function in embryonic pattern formation, in the early stages of central nervous system neurogenesis and in cerebellar maturation. Mouse Zic genes are expressed in restricted, and in some cases overlapping, patterns during development, particularly in the central and peripheral nervous systems. We identified chick ZIC2 in a differential display analysis of the auditory system designed to find genes up-regulated after noise trauma. In this study, we examined the expression of chick ZIC1 , ZIC2 , and ZIC3 by in situ hybridization in normal inner ear development and in the tissues that influence its development, including the hindbrain, the neural crest, and the periotic mesenchyme. Between Hamburger and Hamilton stages 13 and 24, all three ZIC genes were found in the dorsal periotic mesenchyme adjacent to the developing inner ear. ZIC1 mRNA was expressed in the otocyst epithelium between stages 12 and 24, in some sensory tissue, as well as in a striped pattern in the floorplate of the hindbrain that appears to be complementary to that of Chordin, a gene known to regulate ZIC expression in frogs. Chick ZIC genes are also expressed in the neuroectoderm, paraxial mesenchyme, brain, spinal cord, neural crest, and/or the overlying ectoderm as well as the limb buds. In general, ZIC1 and ZIC2 expression patterns overlapped, although ZIC2 expression was less robust; ZIC3 expression was minimal. These observations suggest that ZIC genes, in addition to their known roles in brain development, may play an important role in the development of the chick inner ear. Developmental Dynamics 702–712, 2003. © 2003 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/35173/1/10262_ftp.pd

    Sexual Phenotype Differences in zic2 mRNA Abundance in the Preoptic Area of a Protogynous Teleost, Thalassoma bifasciatum

    Get PDF
    The highly conserved members of the zic family of zinc-finger transcription factors are primarily known for their roles in embryonic signaling pathways and regulation of cellular proliferation and differentiation. This study describes sexual phenotype differences in abundances of zic2 mRNA in the preoptic area of the hypothalamus, a region strongly implicated in sexual behavior and function, in an adult teleost, Thalassoma bifasciatum. The bluehead wrasse (Thalassoma bifasciatum) is a valuable model for studying neuroendocrine processes because it displays two discrete male phenotypes, initial phase (IP) males and territorial, terminal phase (TP) males, and undergoes socially-controlled protogynous sex change. Previously generated microarray-based comparisons suggested that zic2 was upregulated in the brains of terminal phase males relative to initial phase males. To further explore this difference, we cloned a 727 bp sequence for neural zic2 from field-collected animals. Riboprobe-based in situ hybridization was employed to localize zic2 signal in adult bluehead brains and assess the relative abundance of brain zic2 mRNA across sexual phenotypes. We found zic2 mRNA expression was extremely abundant in the granular cells of the cerebellum and widespread in other brain regions including in the thalamus, hypothalamus, habenula, torus semicircularis, torus longitudinalis, medial longitudinal fascicle and telencephalic areas. Quantitative autoradiography and phosphorimaging showed zic2 mRNA hybridization signal in the preoptic area of the hypothalamus was significantly higher in terminal phase males relative to both initial phase males and females, and silver grain analysis confirmed this relationship between phenotypes. No significant difference in abundance was found in zic2 signal across phenotypes in the habenula, a brain region not implicated in the control of sexual behavior, or cerebellum

    Infants with esophageal atresia and right aortic arch: Characteristics and outcomes from the Midwest Pediatric Surgery Consortium

    Get PDF
    Purpose Right sided aortic arch (RAA) is a rare anatomic finding in infants with esophageal atresia with or without tracheoesophageal fistula (EA/TEF). In the presence of RAA, significant controversy exists regarding optimal side for thoracotomy in repair of the EA/TEF. The purpose of this study was to characterize the incidence, demographics, surgical approach, and outcomes of patients with RAA and EA/TEF. Methods A multi-institutional, IRB approved, retrospective cohort study of infants with EA/TEF treated at 11 children's hospitals in the United States over a 5-year period (2009 to 2014) was performed. All patients had a minimum of one-year follow-up. Results In a cohort of 396 infants with esophageal atresia, 20 (5%) had RAA, with 18 having EA with a distal TEF and 2 with pure EA. Compared to infants with left sided arch (LAA), RAA infants had a lower median birth weight, (1.96 kg (IQR 1.54–2.65) vs. 2.57 kg (2.00–3.03), p = 0.01), earlier gestational age (34.5 weeks (IQR 32–37) vs. 37 weeks (35–39), p = 0.01), and a higher incidence of congenital heart disease (90% vs. 32%, p  0.29). Conclusion RAA in infants with EA/TEF is rare with an incidence of 5%. Compared to infants with EA/TEF and LAA, infants with EA/TEF and RAA are more severely ill with lower birth weight and higher rates of prematurity and complex congenital heart disease. In neonates with RAA, surgical repair of the EA/TEF is technically feasible via thoracotomy from either chest. A higher incidence of anastomotic strictures may occur with a right-sided approach

    Unified Methods in Collecting, Preserving, and Archiving Coral Bleaching and Restoration Specimens to Increase Sample Utility and Interdisciplinary Collaboration

    Get PDF
    Coral reefs are declining worldwide primarily because of bleaching and subsequent mortality resulting from thermal stress. Currently, extensive efforts to engage in more holistic research and restoration endeavors have considerably expanded the techniques applied to examine coral samples. Despite such advances, coral bleaching and restoration studies are often conducted within a specific disciplinary focus, where specimens are collected, preserved, and archived in ways that are not always conducive to further downstream analyses by specialists in other disciplines. This approach may prevent the full utilization of unexpended specimens, leading to siloed research, duplicative efforts, unnecessary loss of additional corals to research endeavors, and overall increased costs. A recent US National Science Foundation-sponsored workshop set out to consolidate our collective knowledge across the disciplines of Omics, Physiology, and Microscopy and Imaging regarding the methods used for coral sample collection, preservation, and archiving. Here, we highlight knowledge gaps and propose some simple steps for collecting, preserving, and archiving coral-bleaching specimens that can increase the impact of individual coral bleaching and restoration studies, as well as foster additional analyses and future discoveries through collaboration. Rapid freezing of samples in liquid nitrogen or placing at −80 °C to −20 °C is optimal for most Omics and Physiology studies with a few exceptions; however, freezing samples removes the potential for many Microscopy and Imaging-based analyses due to the alteration of tissue integrity during freezing. For Microscopy and Imaging, samples are best stored in aldehydes. The use of sterile gloves and receptacles during collection supports the downstream analysis of host-associated bacterial and viral communities which are particularly germane to disease and restoration efforts. Across all disciplines, the use of aseptic techniques during collection, preservation, and archiving maximizes the research potential of coral specimens and allows for the greatest number of possible downstream analyses
    corecore