15,636 research outputs found

    Molecular films associated with LDEF

    Get PDF
    The molecular films deposited on the surface of the Long Duration Exposure Facility (LDEF) originated from the paints and room-temperature-vulcanized (RTV) silicone materials intentionally used on the satellite and not from residual contaminants. The high silicone content of most of the films and the uniformity of the films indicates a homogenization process in the molecular deposition and suggests a chemically most favored composition for the final film. The deposition on interior surfaces and vents indicated multiple bounce trajectories or repeated deposition-reemission cycles. Exterior surface deposits indicated a significant return flux. Ultraviolet light exposure was required to fix the deposited film as is indicated by the distribution of the films on interior surfaces and the thickness of films at the vent locations. Thermal conditions at the time of exposure to ultraviolet light seems to be an important factor in the thickness of the deposit. Sunrise facing (ram direction) surfaces always had the thicker film. These were the coldest surfaces at the time of their exposure to ultraviolet light. The films have a layered structure suggesting cyclic deposition. As many as 34 distinct layers were seen in the films. The cyclic nature of the deposition and the chemical uniformity of the film one layer to the next suggest an early deposition of the films though there is evidence for the deposition of molecular films throughout the nearly six year exposure of the satellite. A final 'spray' of an organic material associated with water soluble salts occurred very late in the mission. This may have been the result of one of the shuttle dump activities

    Eccentric discs in binaries with intermediate mass ratios: Superhumps in the VY Sculptoris stars

    Full text link
    We investigate the role of the eccentric disc resonance in systems with mass ratios q greater than 1/4, and demonstrate the effects that changes in the mass flux from the secondary star have upon the disc radius and structure. The addition of material with low specific angular momentum to its outer edge restricts a disc radially. Should the mass flux from the secondary be reduced, it is possible for the disc in a system with mass ratio as large as 1/3 to expand to the 3:1 eccentric inner Lindblad resonance and for superhumps to be excited.Comment: 6 pages with 7 figures, accepted by MNRA

    Smoking, dementia and cognitive decline in the elderly, a systematic review.

    Get PDF
    Background. Nicotine may aid reaction time, learning and memory, but smoking increases cardiovascular risk. Cardiovascular risk factors have been linked to increased risk of dementia. A previous meta-analysis found that current smokers were at higher risk of subsequent dementia, Alzheimers disease, vascular dementia and cognitive decline. Methods. In order to update and examine this further a systematic review and meta-analysis was carried out using different search and inclusion criteria, database selection and more recent publications. Both reviews were restricted to those aged 65 and over. Results. The review reported here found a significantly increased risk of Alzheimers disease with current smoking and a likely but not significantly increased risk of vascular dementia, dementia unspecified and cognitive decline. Neither review found clear relationships with former smoking. Conclusion. Current smoking increases risk of Alzheimers disease and may increase risk of other dementias. This reinforces need for smoking cessation, particularly aged 65 and over. Nicotine alone needs further investigation. Ā© 2008 Peters et al; licensee BioMed Central Ltd

    Friction force microscopy : a simple technique for identifying graphene on rough substrates and mapping the orientation of graphene grains on copper

    Get PDF
    At a single atom thick, it is challenging to distinguish graphene from its substrate using conventional techniques. In this paper we show that friction force microscopy (FFM) is a simple and quick technique for identifying graphene on a range of samples, from growth substrates to rough insulators. We show that FFM is particularly effective for characterizing graphene grown on copper where it can correlate the graphene growth to the three-dimensional surface topography. Atomic lattice stickā€“slip friction is readily resolved and enables the crystallographic orientation of the graphene to be mapped nondestructively, reproducibly and at high resolution. We expect FFM to be similarly effective for studying graphene growth on other metal/locally crystalline substrates, including SiC, and for studying growth of other two-dimensional materials such as molybdenum disulfide and hexagonal boron nitride

    Impact-induced acceleration by obstacles

    Full text link
    We explore a surprising phenomenon in which an obstruction accelerates, rather than decelerates, a moving flexible object. It has been claimed that the right kind of discrete chain falling onto a table falls \emph{faster} than a free-falling body. We confirm and quantify this effect, reveal its complicated dependence on angle of incidence, and identify multiple operative mechanisms. Prior theories for direct impact onto flat surfaces, which involve a single constitutive parameter, match our data well if we account for a characteristic delay length that must impinge before the onset of excess acceleration. Our measurements provide a robust determination of this parameter. This supports the possibility of modeling such discrete structures as continuous bodies with a complicated constitutive law of impact that includes angle of incidence as an input.Comment: small changes and corrections, added reference

    Electro-Mechanical Fredericks Effects in Nematic Gels

    Full text link
    The solid nematic equivalent of the Fredericks transition is found to depend on a critical field rather than a critical voltage as in the classical case. This arises because director anchoring is principally to the solid rubbery matrix of the nematic gel rather than to the sample surfaces. Moreover, above the threshold field, we find a competition between quartic (soft) and conventional harmonic elasticity which dictates the director response. By including a small degree of initial director misorientation, the calculated field variation of optical anisotropy agrees well with the conoscopy measurements of Chang et al (Phys.Rev.E56, 595, 1997) of the electro-optical response of nematic gels.Comment: Latex (revtex style), 5 EPS figures, submitted to PRE, corrections to discussion of fig.3, cosmetic change

    Regional variation in digital cushion pressure in the forefeet of horses and elephants

    Get PDF
    In this study, we seek to understand how the digital cushion morphologies evident in horse and elephant feet influence internal and external foot pressures. Our novel use of invasive blood pressure monitoring equipment, combined with a pressure pad and force plate, enabled measurements of (ex vivo) digital cushion pressure under increasing axial loads in seven horse and six elephant forefeet. Linear mixed effects models (LMER) revealed that internal digital cushion pressures increase under load and differ depending on region; elephant feet experienced higher magnitudes of medial digital cushion pressure, whereas horse feet experienced higher magnitudes of centralised digital cushion pressure. Direct comparison of digital cushion pressure magnitudes in both species, at equivalent loads relative to body weight, revealed that medial and lateral pressures increased more rapidly with load in elephant limbs. Within the same approximate region, internal pressures exceeded external, palmar pressures (on the sole of the foot), supporting previous Finite Element (FE) predictions. High pressures and large variations in pressure may relate to the development of foot pathology, which is a major concern in horses and elephants in a captive/domestic environment

    Computational challenges of systems biology

    Get PDF
    Progress in the study of biological systems such as the heart, brain, and liver will require computer scientists to work closely with life scientists and mathematicians. Computer science will play a key role in shaping the new discipline of systems biology and addressing the significant computational challenges it poses
    • ā€¦
    corecore