287 research outputs found
Role of shear stress in endothelial cell morphology and expression of cyclooxygenase isoforms
MEDLINE® is the source for the MeSH terms of this document.Objective-: The goal of this study was to examine the effect of chronic heterogeneous shear stress, applied using an orbital shaker, on endothelial cell morphology and the expression of cyclooxygenases 1 and 2. Methods and results-: Porcine aortic endothelial cells were plated on fibronectin-coated Transwell plates. Cells were cultured for up to 7 days either under static conditions or on an orbital shaker that generated a wave of medium inducing shear stress over the cells. Cells were fixed and stained for the endothelial surface marker CD31 or cyclooxygenases 1 and 2. En face confocal microscopy and scanning ion conductance microscopy were used to show that endothelial cells were randomly oriented at the center of the well, aligned with shear stress nearer the periphery, and expressed cyclooxygenase-1 under all conditions. Lipopolysaccharide induced cyclooxygenase-2 and the production of 6-keto-prostaglandin F1α in all cells. Conclusion-: Cyclooxygenase-1 is expressed in endothelial cells cultured under chronic shear stress of high or low directionality.Peer reviewedSubmitted Versio
Deuteron Detection Efficiency of Ge Telescopes
This research was sponsored by the National Science Foundation Grant NSF PHy 87-1440
Study of the (d,2-He) Reaction at E_d = 99 MeV
This work was supported by the National Science Foundation Grants NSF PHY 78-22774 A03, NSF PHY 81-14339, and by Indiana Universit
Elastic Scattering of 100 MeV Polarized Protons from 4-He
This research was sponsored by the National Science Foundation Grant NSF PHy 87-1440
The Non-coplanar 6-Li(p,pd)4-He Reaction at 120 and 200 MeV
This research was sponsored by the National Science Foundation Grant NSF PHy 87-1440
Novae Ejecta as Colliding Shells
Following on our initial absorption-line analysis of fifteen novae spectra we
present additional evidence for the existence of two distinct components of
novae ejecta having different origins. As argued in Paper I one component is
the rapidly expanding gas ejected from the outer layers of the white dwarf by
the outburst. The second component is pre-existing outer, more slowly expanding
circumbinary gas that represents ejecta from the secondary star or accretion
disk. We present measurements of the emission-line widths that show them to be
significantly narrower than the broad P Cygni profiles that immediately precede
them. The emission profiles of novae in the nebular phase are distinctly
rectangular, i.e., strongly suggestive of emission from a relatively thin,
roughly spherical shell. We thus interpret novae spectral evolution in terms of
the collision between the two components of ejecta, which converts the early
absorption spectrum to an emission-line spectrum within weeks of the outburst.
The narrow emission widths require the outer circumbinary gas to be much more
massive than the white dwarf ejecta, thereby slowing the latter's expansion
upon collision. The presence of a large reservoir of circumbinary gas at the
time of outburst is suggestive that novae outbursts may sometime be triggered
by collapse of gas onto the white dwarf, as occurs for dwarf novae, rather than
steady mass transfer through the inner Lagrangian point.Comment: 12 pages, 3 figures; Revised manuscript; Accepted for publication in
Astrophysics & Space Scienc
The Glauber model and the heavy ion reaction cross section
We reexamine the Glauber model and calculate the total reaction cross section
as a function of energy in the low and intermediate energy range, where many of
the corrections in the model, are effective.
The most significant effect in this energy range is by the modification of
the trajectory due to the Coulomb field. The modification in the trajectory due
to nuclear field is also taken into account in a self consistent way.
The energy ranges in which particular corrections are effective, are
quantified and it is found that when the center of mass energy of the system
becomes 30 times the Coulomb barrier, none of the trajectory modification to
the Glauber model is really required.
The reaction cross sections for light and heavy systems, right from near
coulomb barrier to intermediate energies have been calculated. The exact
nuclear densities and free nucleon-nucleon (NN) cross sections have been used
in the calculations. The center of mass correction which is important for light
systems, has also been taken into account.
There is an excellent agreement between the calculations with the modified
Glauber model and the experimental data. This suggests that the heavy ion
reactions in this energy range can be explained by the Glauber model in terms
of free NN cross sections without incorporating any medium modification.Comment: RevTeX, 21 pages including 9 Postscript figures, submitted to Phys.
Rev.
- …