161 research outputs found

    ERCC1 expression as a predictive marker of squamous cell carcinoma of the head and neck treated with cisplatin-based concurrent chemoradiation

    Get PDF
    The excision repair cross-complementation group 1 (ERCC1) enzyme plays a rate-limiting role in the nucleotide excision repair pathway and is associated with resistance to platinum-based chemotherapy. The purpose of this study was to evaluate the role of ERCC1 expression as a predictive marker of survival in patients with locally advanced squamous cell carcinoma of the head and neck (SCCHN) treated with cisplatin-based concurrent chemoradiotherapy (CCRT). ERCC1 expression was assessed by immunohistochemical staining. The median age of the 45 patients analysed was 56 years (range 27–75 years), and 82% were men; 73% of all specimens showed high expression of ERCC1. The overall tumour response rate after CCRT was 89%. The median follow-up was 53.6 months (95% CI, 34.5–72.7 months). The 3-year progression-free survival (PFS) and overall survival (OS) rates were 58.7 and 61.3%, respectively. Univariate analyses showed that patients with low expression of ERCC1 had a significantly higher 3-year PFS (83.3 vs 49.4%, P=0.036) and OS (91.7 vs 45.5%, P=0.013) rates. Multivariate analysis showed that low expression of ERCC1 was an independent predictor for prolonged survival (HR, 0.120; 95% CI, 0.016–0.934, P=0.043). These results suggest that ERCC1 expression might be a useful predictive marker of locally advanced SCCHN in patients treated with cisplatin-based CCRT

    Combined mRNA expression levels of members of the urokinase plasminogen activator (uPA) system correlate with disease-associated survival of soft-tissue sarcoma patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Members of the urokinase-type plasminogen activator (uPA) system are up-regulated in various solid malignant tumors. High antigen levels of uPA, its inhibitor PAI-1 and its receptor uPAR have recently been shown to be associated with poor prognosis in soft-tissue sarcoma (STS) patients. However, the mRNA expression of uPA system components has not yet been comprehensively investigated in STS patients.</p> <p>Methods</p> <p>The mRNA expression level of uPA, PAI-1, uPAR and an uPAR splice variant, uPAR-del4/5, was analyzed in tumor tissue from 78 STS patients by quantitative PCR.</p> <p>Results</p> <p>Elevated mRNA expression levels of PAI-1 and uPAR-del4/5 were significantly associated with clinical parameters such as histological subtype (<it>P </it>= 0.037 and <it>P </it>< 0.001, respectively) and higher tumor grade (<it>P </it>= 0.017 and <it>P </it>= 0.003, respectively). In addition, high uPAR-del4/5 mRNA values were significantly related to higher tumor stage of STS patients (<it>P </it>= 0.031). On the other hand, mRNA expression of uPA system components was not significantly associated with patients' survival. However, in STS patients with complete tumor resection (R0), high PAI-1 and uPAR-del4/5 mRNA levels were associated with a distinctly increased risk of tumor-related death (RR = 6.55, <it>P </it>= 0.054 and RR = 6.00, <it>P </it>= 0.088, respectively). Strikingly, R0 patients with both high PAI-1 and uPAR-del4/5 mRNA expression levels showed a significant, 19-fold increased risk of tumor-related death (<it>P </it>= 0.044) compared to the low expression group.</p> <p>Conclusion</p> <p>Our results suggest that PAI-1 and uPAR-del4/5 mRNA levels may add prognostic information in STS patients with R0 status and distinguish a subgroup of R0 patients with low PAI-1 and/or low uPAR-del4/5 values who have a better outcome compared to patients with high marker levels.</p

    PIM

    No full text

    ERCC1: impact in multimodality treatment of upper gastrointestinal cancer

    No full text
    Platinum-based drugs and radiation are key elements of multimodality treatment in a wide variety of solid tumors and especially tumors of the upper gastrointestinal tract. Cytotoxicity is directly related to their ability to cause DNA damage. This event consecutively triggers the nucleotide excision repair (NER) complex. The NER capacity has a major impact on chemo and radiation sensitivity, emergence of resistance and patient outcome. Excision repair cross-complementing group 1 (ERCC1) is a key molecule in NER. This review provides an overview of the NER complex with a focus on ERCC1. Recent literature has been analyzed and provides information regarding the potential role of ERCC1 as a prognostic factor in multimodality treatment of upper gastrointestinal cancer and cancer risk. To date, the role of ERCC1 as a predictive marker for individual multimodality treatment is far from being firmly established for routine use. However, with reliable methods, established cut-off values and validation in large, prospective, randomized trials, ERCC1 may possibly prove to play an important role as a tumor marker in individualized treatment for upper gastrointestinal cancer

    Neoadjuvant treatment for advanced esophageal cancer: response assessment before surgery and how to predict response to chemoradiation before starting treatment

    No full text
    Patients with advanced esophageal cancer (T3-4, N) have a poor prognosis. Chemoradiation or chemotherapy before esophagectomy with adequate lymphadenectomy is the standard treatment for patients with resectable advanced esophageal carcinoma. However, only patients with major histopathologic response (regression to less than 10% of the primary tumor) after preoperative treatment will have a prognostic benefit of preoperative chemoradiation. Using current therapy regimens about 40% to 50% of the patients show major histopathological response. The remaining cohort does not benefit from this neoadjuvant approach but might benefit from earlier surgical resection. Therefore, it is an aim to develop tools for response prediction before starting the treatment and for early response assessment identifying responders. The current review discusses the different imaging techniques and the most recent studies about molecular markers for early response prediction. The results show that [F-18]-fluorodeoxyglucose-positron emission tomography (FDG-PET) has a good sensitivity but the specificity is not robust enough for routine clinical use. Newer positron emission tomography detector technology, the combination of FDG-PET with computed tomography, additional evaluation criteria and standardization of evaluation may improve the predictive value. There exist a great number of retrospective studies using molecular markers for prediction of response. Until now the clinical use is missing. But the results of first prospective studies are promising. A future perspective may be the combination of imaging technics and special molecular markers for individualized therapy. Another aspect is the response assessment after finishing neoadjuvant treatment protocol. The different clinical methods are discussed. The results show that until now no non-invasive method is valid enough to assess complete histopathological response

    Diagnostic marker signature for esophageal cancer from transcriptome analysis

    No full text
    Esophageal cancer is often diagnosed at an advanced stage. Diagnostic markers are needed for achieving a cure in esophageal cancer detecting and treating tumor cells earlier. In patients with locally advanced squamous cell carcinoma of the esophagus (ESCC), we profiled the gene expression of ESCC compared to corresponding normal biopsies for diagnostic markers by genome microarrays. Profiling of gene expression identified 4844 genes differentially expressed, 2122 upregulated and 2722 downregulated in ESCC. Twenty-three overexpressed candidates with best scores from significance analysis have been selected for further analysis by TaqMan low-density array-technique using a validation cohort of 40 patients. The verification rate was 100% for ESCC. Twenty-two markers were additionally overexpressed in adenocarcinoma of the esophagus (EAC). The markers significantly overexpressed already in earlier tumor stages (pT1-2) of both histological subtypes (n=19) have been clustered in a diagnostic signature: PLA2G7, PRAME, MMP1, MMP3, MMP12, LIlRB2, TREM2, CHST2, IGFBP2, IGFBP7, KCNJ8, EMILIN2, CTHRC1, EMR2, WDR72, LPCAT1, COL4A2, CCL4, and SNX10. The marker signature will be translated to clinical practice to prove its diagnostic impact. This diagnostic signature may contribute to the earlier detection of tumor cells, with the aim to complement clinical techniques resulting in the development of better detection of concepts of esophageal cancer for earlier therapy and more favorite prognosis
    corecore