1,656 research outputs found

    Рекомендации по ограничению динамических перенапряжений в обмотке ротора асинхронизированного турбогенератора

    Get PDF
    In this paper, a Volume-of-Fluid (VOF)-based approach for the Direct Numerical Simulation (DNS) of reactive mass transfer in gas–liquid flows is described. At the interface, local thermodynamic equilibrium is assumed and modelled by Henry's law. First numerical simulation results are presented for non-reactive and reactive mass transfer from rising gas bubbles to a surrounding liquid. For the evaluation of reactive mass transfer simulations with a consecutive, competitive reaction system in the liquid, a local selectivity is employed

    Unobtrusive Health Monitoring in Private Spaces: The Smart Vehicle

    Get PDF
    Unobtrusive in-vehicle health monitoring has the potential to use the driving time to perform regular medical check-ups. This work intends to provide a guide to currently proposed sensor systems for in-vehicle monitoring and to answer, in particular, the questions: (1) Which sensors are suitable for in-vehicle data collection? (2) Where should the sensors be placed? (3) Which biosignals or vital signs can be monitored in the vehicle? (4) Which purposes can be supported with the health data? We reviewed retrospective literature systematically and summarized the up-to-date research on leveraging sensor technology for unobtrusive in-vehicle health monitoring. PubMed, IEEE Xplore, and Scopus delivered 959 articles. We firstly screened titles and abstracts for relevance. Thereafter, we assessed the entire articles. Finally, 46 papers were included and analyzed. A guide is provided to the currently proposed sensor systems. Through this guide, potential sensor information can be derived from the biomedical data needed for respective purposes. The suggested locations for the corresponding sensors are also linked. Fifteen types of sensors were found. Driver-centered locations, such as steering wheel, car seat, and windscreen, are frequently used for mounting unobtrusive sensors, through which some typical biosignals like heart rate and respiration rate are measured. To date, most research focuses on sensor technology development, and most application-driven research aims at driving safety. Health-oriented research on the medical use of sensor-derived physiological parameters is still of interest

    GroEL dependency affects codon usage—support for a critical role of misfolding in gene evolution

    Get PDF
    Integrating genome-scale sequence, expression, structural and protein interaction data from E. coli we establish an interaction between chaperone (GroEL) dependency and optimal codon usage.Highly expressed sporadic substrates of GroEL employ more optimal codons than expected, show enrichment for optimal codons at structurally sensitive sites and greater conservation of codon optimality under conditions of relaxed purifying selection.We suggest that highly expressed genes cannot routinely utilize GroEL for error control so that codon usage has evolved to provide complementary error limitation, whereas obligate GroEL substrates experience relaxed selection on codon usage.Our results support a critical role of misfolding prevention in gene evolution

    Hardware Prototype for Wrist-Worn Simultaneous Monitoring of Environmental, Behavioral, and Physiological Parameters

    Get PDF
    We designed a low-cost wrist-worn prototype for simultaneously measuring environmental, behavioral, and physiological domains of influencing factors in healthcare. Our prototype continuously monitors ambient elements (sound level, toxic gases, ultraviolet radiation, air pressure, temperature, and humidity), personal activity (motion tracking and body positioning using gyroscope, magnetometer, and accelerometer), and vital signs (skin temperature and heart rate). An innovative three-dimensional hardware, based on the multi-physical-layer approach is introduced. Using board-to-board connectors, several physical hardware layers are stacked on top of each other. All of these layers consist of integrated and/or add-on sensors to measure certain domain (environmental, behavioral, or physiological). The prototype includes centralized data processing, transmission, and visualization. Bi-directional communication is based on Bluetooth Low Energy (BLE) and can connect to smartphones as well as smart cars and smart homes for data analytic and adverse-event alerts. This study aims to develop a prototype for simultaneous monitoring of the all three areas for monitoring of workplaces and chronic obstructive pulmonary disease (COPD) patients with a concentration on technical development and validation rather than clinical investigation. We have implemented 6 prototypes which have been tested by 5 volunteers. We have asked the subjects to test the prototype in a daily routine in both indoor (workplaces and laboratories) and outdoor. We have not imposed any specific conditions for the tests. All presented data in this work are from the same prototype. Eleven sensors measure fifteen parameters from three domains. The prototype delivers the resolutions of 0.1 part per million (PPM) for air quality parameters, 1 dB, 1 index, and 1 °C for sound pressure level, UV, and skin temperature, respectively. The battery operates for 12.5 h under the maximum sampling rates of sensors without recharging. The final expense does not exceed 133€. We validated all layers and tested the entire device with a 75 min recording. The results show the appropriate functionalities of the prototype for further development and investigations

    Abundance of actinobacteria and production of geosmin and 2-methylisoborneol in Danish streams and fish ponds

    Get PDF
    Occurrence of the odours geosmin and 2-methylisoborneol (MIB) in freshwater environments indicates that odour-producing organisms are commonly occurring. In the present study, we assumed actinomycetes to be a major source of the odours. Seasonal concentrations of odours and abundance of Actinobacteria, which includes actinomycetes and other G+ and high GC bacteria, were determined in one oligotrophic and two eutrophic freshwater streams, as well as in aquacultures connected to these streams, in Denmark. Concentrations of geosmin and MIB ranged from 2 to 9 ng l−1 and were lowest in the winter. Passage of stream water in the aquacultures increased the amount of geosmin and MIB by up to 55% and 110%, respectively. Densities of actinobacteria were determined by fluorescence in situ hybridization with catalyzed reporter deposition (CARD-FISH) technique and were found to make up from 4 to 38 × 107 cells l−1, corresponding to 3–9% of the total bacterial populations. The lowest densities of actinobacteria occurred in the winter. Filamentous bacteria targeted by the FISH probe made up about 2.7–38% (average was 22%) of the actinobacteria and were expected to be actinomycetes. Combined microautoradiography and CARD-FISH demonstrated that 10–38% (incorporation of 3H-thymidine) and 41–65% (incorporation of 3H-leucine) of the actinobacteria were metabolically active. The proportion of active actinobacteria increased up to 2-fold during passage of stream water in the aquacultures, and up to 98% of the cells became active. Sequencing of 16S rRNA genes in 8 bacterial isolates with typical actinomycete morphology from the streams and ponds demonstrated that most of them belonged to the genus Streptomyces. The isolated actinomycetes produced geosmin at rates from 0.1 to 35 ag geosmin bacterium−1 h−1. MIB was produced at similar rates in 5 isolates, whereas no MIB was produced by three of the isolates. Addition of the odours to stream water demonstrated that indigenous stream bacteria were capable of reducing the odours, and that enrichment with LB medium stimulated the degradation. Our study shows that bacterial communities in freshwater include geosmin- and MIB-producing actinobacteria. However, the mechanisms controlling production as well as degradation of the odours in natural waters appear complex and require further research

    Unobtrusive Health Monitoring in Private Spaces: The Smart Home

    Get PDF
    With the advances in sensor technology, big data, and artificial intelligence, unobtrusive in-home health monitoring has been a research focus for decades. Following up our research on smart vehicles, within the framework of unobtrusive health monitoring in private spaces, this work attempts to provide a guide to current sensor technology for unobtrusive in-home monitoring by a literature review of the state of the art and to answer, in particular, the questions: (1) What types of sensors can be used for unobtrusive in-home health data acquisition? (2) Where should the sensors be placed? (3) What data can be monitored in a smart home? (4) How can the obtained data support the monitoring functions? We conducted a retrospective literature review and summarized the state-of-the-art research on leveraging sensor technology for unobtrusive in-home health monitoring. For structured analysis, we developed a four-category terminology (location, unobtrusive sensor, data, and monitoring functions). We acquired 912 unique articles from four relevant databases (ACM Digital Lib, IEEE Xplore, PubMed, and Scopus) and screened them for relevance, resulting in n=55 papers analyzed in a structured manner using the terminology. The results delivered 25 types of sensors (motion sensor, contact sensor, pressure sensor, electrical current sensor, etc.) that can be deployed within rooms, static facilities, or electric appliances in an ambient way. While behavioral data (e.g., presence (n=38), time spent on activities (n=18)) can be acquired effortlessly, physiological parameters (e.g., heart rate, respiratory rate) are measurable on a limited scale (n=5). Behavioral data contribute to functional monitoring. Emergency monitoring can be built up on behavioral and environmental data. Acquired physiological parameters allow reasonable monitoring of physiological functions to a limited extent. Environmental data and behavioral data also detect safety and security abnormalities. Social interaction monitoring relies mainly on direct monitoring of tools of communication (smartphone; computer). In summary, convincing proof of a clear effect of these monitoring functions on clinical outcome with a large sample size and long-term monitoring is still lacking

    Characterisation of a Coriolis flow meter for fuel consumption measurements in realistic drive cycle tests

    Get PDF
    When testing light-duty and heavy-duty vehicles on chassis dynamometers, as in the WLTP, or engines on engine test benches, as in the WHDC, it is required to measure the fuel consumption. In the preferable case, the measurement of the fuel consumption is carried out with suitable flow meters. These require high measurement accuracy in a wide flow range, independent of the fuel type, as the flow rate range is often very large and depends on the power range of the vehicle engines. Moreover, the fuel flow rate in the test cycles is very dynamically related to the loads. In the scope of the ongoing EMPIR Joint Research Project 20IND13 SAFEST the dynamic flow behaviour as well as the measurement accuracy of flow meters for different types of fuels are investigated. This paper presents first results from the realisation of dynamic flow profiles, and flow measurements with a Coriolis Flow Meter with different representative fuels in a wide density and viscosity range and a wide flow rate range at different fuel temperatures

    Surfactant function in lung transplantation after 24 hours of ischemia: Advantage of retrograde flush perfusion for preservation

    Get PDF
    AbstractObjective: Surfactant function was shown to be impaired in clinical and experimental lung transplantation. This study was designed to define the impact of retrograde flush perfusion on graft and surfactant function after an extended period of ischemia. Methods: Left lung transplantation was performed after 24 hours of graft ischemia in 12 pigs. In half of the grafts antegrade cold flush perfusion (Perfadex) was used for preservation. In the second group grafts were flushed in a retrograde fashion via the left atrium. Graft function was monitored for 7 hours after transplantation. Before transplantation (basal) and after 2 hours of reperfusion, bronchoalveolar lavage fluid was obtained. Minimal surface tension of bronchoalveolar lavage fluid was determined and the ratio of small and large surfactant aggregates was calculated. Lung water content was analyzed online in the reperfusion period. Results: Right-sided heart failure developed in 2 animals of group 1 (antegrade perfusion) within 2 and 4.5 hours of reperfusion, respectively. All other pigs survived the observation period. PO2/FIO2 (P =.001) and dynamic lung compliance (P =.001) were superior in retrogradely flushed grafts. A comparable increase of minimal surface tension was found after reperfusion in both groups. Small/large surfactant aggregate ratio after reperfusion (P =.03), as well as extravascular lung water content, was higher in the antegrade perfusion group. Conclusion: Retrograde flush perfusion for 24-hour lung preservation with low-potassium dextran (Perfadex) solution led to better initial graft function than the standard antegrade perfusion technique. A moderate impairment of surfactant function was found in both groups, which was more pronounced in the antegrade perfusion group
    corecore