54 research outputs found

    Dense Cloud Ablation and Ram Pressure Stripping of the Virgo Spiral NGC 4402

    Full text link
    We present optical, HI and radio continuum observations of the highly inclined Virgo Cluster Sc galaxy NGC 4402, which show evidence for ram-pressure stripping and dense cloud ablation. VLA HI and radio continuum maps show a truncated gas disk and emission to the northwest of the main disk emission. In particular, the radio continuum emission is asymmetrically extended to the north and skewed to the west. The Halpha image shows numerous HII complexes along the southern edge of the gas disk, possibly indicating star formation triggered by the ICM pressure. BVR images at 0.5" resolution obtained with the WIYN Tip-Tilt Imager show a remarkable dust lane morphology: at half the optical radius, the dust lane of the galaxy curves up and out of the disk, matching the HI morphology. Large dust plumes extend upward for ~1.5 kpc from luminous young star clusters at the SE edge of the truncated gas disk. These star clusters are very blue, indicating very little dust reddening, which suggests dust blown away by an ICM wind at the leading edge of the interaction. To the south of the main ridge of interstellar material, where the galaxy is relatively clean of gas and dust, we have discovered 1 kpc long linear dust filaments with a position angle that matches the extraplanar radio continuum tail; we interpret this angle as the projected ICM wind direction. One of the observed dust filaments has an HII region at its head. We interpret these dust filaments as large, dense clouds which were initially left behind as the low-density ISM is stripped, but are then ablated by the ICM wind. These results provide striking new evidence on the fate of molecular clouds in stripped cluster galaxies.Comment: 17 pages, 4 figures, accepted for publication in AJ. See ftp://ftp.astro.yale.edu/pub/hugh/papers/crowl_n4402.ps.gz for a version with high-resolution figure

    Ongoing Gas Stripping in the Virgo Cluster Spiral NGC 4522

    Full text link
    The Virgo cluster galaxy NGC 4522 is one of the best spiral candidates for ICM-ISM stripping in action. Optical broadband and H-alpha images from the WIYN telescope of the highly inclined galaxy reveal a relatively undisturbed stellar disk and a peculiar distribution of H-alpha emission. Ten percent of the H-alpha emission arises from extraplanar HII regions which appear to lie within filamentary structures >3 kpc long above one side of the disk. The filaments emerge from the outer edge of a disk of bright H-alpha emission which is abruptly truncated beyond 0.35R(25). Together the truncated H-alpha disk and extraplanar H-alpha filaments are reminiscent of a bow shock morphology, which strongly suggests that the interstellar medium (ISM) of NGC 4522 is being stripped by the gas pressure of the intracluster medium (ICM). The galaxy has a line-of-sight velocity of 1300 km/sec with respect to the mean Virgo cluster velocity, and thus is expected to experience a strong interaction with the intracluster gas. The existence of HII regions apparently located above the disk plane suggests that star formation is occuring in the stripped gas, and that newly formed stars will enter the galaxy halo and/or intracluster space. The absence of HII regions in the disk beyond 0.35R(25), and the existence of HII regions in the stripped gas suggest that even molecular gas has been effectively removed from the disk of the galaxy.Comment: to appear in The Astronomical Journal, 16 pages, 5 figures, 1 tabl

    Star Formation Thresholds in Galactic Disks

    Get PDF
    We report the first results of a detailed study of the star formation law in a sample of 32 nearby spiral galaxies with well-measured rotation curves, HI and H2_2 (as traced by CO) surface density profiles, and new \Ha CCD photometry. Our results strongly support the view that the formation of gravitationally bound interstellar clouds regulates the onset of widespread star formation -- at least in the outer regions of galactic disks.Comment: Will appear in July 1 ApJ. Abbreviated abstract. Postscript version available at http://www.astro.caltech.edu/~clm

    The Evolution of the ISM in the Mildly Disturbed Spiral Galaxy NGC 4647

    Get PDF
    We present matched-resolution maps of HI and CO emission in the Virgo Cluster spiral NGC 4647. The galaxy shows a mild kinematic disturbance in which one side of the rotation curve flattens but the other side continues to rise. This kinematic asymmetry is coupled with a dramatic asymmetry in the molecular gas distribution but not in the atomic gas. An analysis of the gas column densities and the interstellar pressure suggests that the H2/HI surface density ratio on the east side of the galaxy is three times higher than expected from the hydrostatic pressure contributed by the mass of the stellar disk. We discuss the probable effects of ram pressure, gravitational interactions, and asymmetric potentials on the interstellar medium and suggest it is likely that a m=1 perturbation in the gravitational potential could be responsible for all of the galaxy's features. Kinematic disturbances of the type seen here are common, but the curious thing about NGC 4647 is that the molecular distribution appears more disturbed than the HI distribution. Thus it is the combination of the two gas phases that provides such interesting insight into the galaxy's history and into models of the interstellar medium.Comment: ApJ, accepte

    Ram pressure stripping and galaxy orbits: The case of the Virgo cluster

    Full text link
    We investigate the role of ram pressure stripping in the Virgo cluster using N-body simulations. Radial orbits within the Virgo cluster's gravitational potential are modeled and analyzed with respect to ram pressure stripping. The N-body model consists of 10000 gas cloud complexes which can have inelastic collisions. Ram pressure is modeled as an additional acceleration on the clouds located at the surface of the gas distribution in the direction of the galaxy's motion within the cluster. We made several simulations changing the orbital parameters in order to recover different stripping scenarios using realistic temporal ram pressure profiles. We investigate systematically the influence of the inclination angle between the disk and the orbital plane of the galaxy on the gas dynamics. We show that ram pressure can lead to a temporary increase of the central gas surface density. In some cases a considerable part of the total atomic gas mass (several 10^8 M_solar) can fall back onto the galactic disk after the stripping event. A quantitative relation between the orbit parameters and the resulting HI deficiency is derived containing explicitly the inclination angle between the disk and the orbital plane. The comparison between existing HI observations and the results of our simulations shows that the HI deficiency depends strongly on galaxy orbits. It is concluded that the scenario where ram pressure stripping is responsible for the observed HI deficiency is consistent with all HI 21cm observations in the Virgo cluster.Comment: 29 pages with 21 figures. Accepted for publication in Ap

    Testing Modified Newtonian Dynamics with Rotation Curves of Dwarf and Low Surface Brightness Galaxies

    Get PDF
    Dwarf and low surface brightness galaxies are ideal objects to test modified Newtonian dynamics (MOND), because in most of these galaxies the accelerations fall below the threshold below where MOND supposedly applies. We have selected from the literature a sample of 27 dwarf and low surface brightness galaxies. MOND is successful in explaining the general shape of the observed rotation curves for roughly three quarters of the galaxies in the sample presented here. However, for the remaining quarter, MOND does not adequately explain the observed rotation curves. Considering the uncertainties in distances and inclinations for the galaxies in our sample, a small fraction of poor MOND predictions is expected and is not necessarily a problem for MOND. We have also made fits taking the MOND acceleration constant, a_0, as a free parameter in order to identify any systematic trends. We find that there appears to be a correlation between central surface brightness and the best-fit value of a_0, in the sense that lower surface brightness galaxies tend to have lower a_0. However, this correlation depends strongly on a small number of galaxies whose rotation curves might be uncertain due to either bars or warps. Without these galaxies, there is less evidence of a trend, but the average value we find for a_0 ~ 0.7*10^-8 cm s^-2 is somewhat lower than derived from previous studies. Such lower fitted values of a_0 could occur if external gravitational fields are important.Comment: 12 pages, accepted for publication in Ap

    Diffuse HI Disks in Isolated Galaxies

    Full text link
    In order to investigate the contribution of diffuse components to their total HI emission, we have obtained high precision HI line flux densities with the 100m Green Bank Telescope for a sample of 100 isolated spiral and irregular galaxies which we have previously observed with the 43m telescope. A comparison of the observed HI line fluxes obtained with the two different telescopes, characterized by half-power beam widths of 9 arcmin and 21 arcmin respectively, exploits a ``beam matching'' technique to yield a statistical determination of the occurrence of diffuse HI components in their disks. A simple model of the HI distribution within a galaxy well describes ~75 % of the sample and accounts for all of the HI line flux density. The remaining galaxies are approximately evenly divided into two categories: ones which appear to possess a significantly more extensive HI distribution than the model predicts, and ones for which the HI distribution is more centrally concentrated than predicted. Examples of both extremes can be found in the literature but little attention has been paid to the centrally concentrated HI systems. Our sample has demonstrated that galaxies do not commonly possess extended regions of low surface brightness HI gas which is not accounted for by our current understanding of the structure of HI disks. Eight HI-rich companions to the target objects are identified, and a set of extragalactic HI line flux density calibrators is presented.Comment: 26 page

    Towards the Secondary Bar: Gas Morphology and Dynamics in NGC 4303

    Get PDF
    The bulk of the molecular line emission in the double barred galaxy NGC4303 as observed in its CO(1-0) line with the OVRO mm-interferometer comes from two straight gas lanes which run north-south along the leading sides of the large-scale primary bar. Inside a radius of ~ 400 pc the molecular gas forms a spiral pattern which, for the northern arm, can be traced to the nucleus. Comparison of the OVRO and archival HST data with dynamical models of gas flow in the inner kiloparsec of single- and double-barred galaxies shows that the observed global properties of the molecular gas are in agreement with models for the gas flow in a strong, large-scale bar, and the two-arm spiral structure seen in CO in the inner kiloparsec can already be explained by a density wave initiated by the potential of that bar. Only a weak correlation between the molecular gas distribution and the extinction seen in the HST V-H map is found in the inner 400 pc of NGC4303: The innermost part of one arm of the nuclear CO spiral correlates with a weak dust filament in the color map, while the overall dust distribution follows a ring or single-arm spiral pattern well correlated with the UV continuum. This complicated nuclear geometry of the stellar and gaseous components allows for two scenarios: (A) A self-gravitating m=1 mode is present forming the spiral structure seen in the UV continuum. In this case the gas kinematics would be unaffected by the small (~ 4'') inner bar. (B) The UV continuum traces a complete ring which is heavily extincted north of the nucleus. Such a ring forms in hydrodynamic models of double bars, but the models cannot account for the UV emission observed on the leading side of the inner bar. (abridged)Comment: 47 pages, 14 figures, accepted for publication in Ap

    The Disk and Extraplanar Environment of NGC 247

    Full text link
    The stellar content of the spiral galaxy NGC 247 is investigated. The main sequence turn-off (MSTO) in the inner 12 kpc of the disk corresponds to an age of 6 Myr. A mean star formation rate (SFR) of 0.1 solar masses per year during the past 16 Myr is computed from star counts. The color of the red supergiant plume does not change with radius, suggesting that the mean metallicity of young stars does not vary by more than 0.1 dex. The number of bright main sequence stars per local stellar mass density climbs towards larger radii out to a distance of 12 kpc; the scale lengths that characterize the radial distributions of young and old stars in the disk thus differ. The density of bright main sequence stars with respect to projected HI mass gradually drops with increasing radius. The population of very young stars disappears in the outer disk; the MSTO at galactocentric radii between 12 and 15 kpc corresponds to 16 Myr, while between 15 and 18 kpc the age is > 40 Myr. Red giant branch (RGB) stars are resolved at a projected minor axis galactocentric distance of 12 kpc. There is a broad spread in metallicity among the RGB stars, with a mean [M/H] = -1.2. The RGB-tip occurs at i' = 24.5 +/- 0.1, indicating that the distance modulus is 27.9 +/- 0.1. Luminous AGB stars with an age 3 Gyr are also seen in this field.Comment: Includes 16 eps figures; to appear in the Astrophysical Journa

    A tale of two galaxies: light and mass in NGC891 and NGC7814

    Get PDF
    The two edge-on galaxies NGC891 and NGC7814 are representative of two extreme morphologies: the former is disk-dominated while the latter is almost entirely bulge-dominated. It has been argued (van der Kruit 1983) that since the two galaxies, which are optically so different, have similar rotation curves their total mass distributions cannot be related in any way to the light distributions. This would lead to the conclusion that dark matter is the dominating component of the mass. We have derived new rotation curves from recent, high-sensitivity HI observations and have found that the shapes of the rotation curves are significantly different for the two galaxies. They indicate that in NGC7814 the mass is more concentrated to the centre as compared to NGC891. This reflects the distribution of light which is more centrally concentrated in NGC7814 than in NGC891. Mass and light do seem to be closely related. This is confirmed by the analysis of the rotation curves in mass components: solutions close to the maximum light (bulge + disk) do provide excellent fits. In NGC891 bulge and disk can explain the rotation curve without any need for dark matter out to ~15 kpc. In NGC7814 the bulge dominates in the inner parts; further out the rotation curve is well reproduced by a maximum disk but its M/L ratio is excessively high. A substantial dark matter contribution, closely coupled to the luminous component, seems, therefore, necessary.Comment: 10 pages, 9 figures, accepted for publication in A&
    • …
    corecore