16 research outputs found

    <i>Neisseria</i> species as pathobionts in bronchiectasis

    Get PDF
    Neisseria species are frequently identified in the bronchiectasis microbiome, but they are regarded as respiratory commensals. Using a combination of human cohorts, next-generation sequencing, systems biology, and animal models, we show that bronchiectasis bacteriomes defined by the presence of Neisseria spp. associate with poor clinical outcomes, including exacerbations. Neisseria subflava cultivated from bronchiectasis patients promotes the loss of epithelial integrity and inflammation in primary epithelial cells. In vivo animal models of Neisseria subflava infection and metabolipidome analysis highlight immunoinflammatory functional gene clusters and provide evidence for pulmonary inflammation. The murine metabolipidomic data were validated with human Neisseria-dominant bronchiectasis samples and compared with disease in which Pseudomonas-, an established bronchiectasis pathogen, is dominant. Metagenomic surveillance of Neisseria across various respiratory disorders reveals broader importance, and the assessment of the home environment in bronchiectasis implies potential environmental sources of exposure. Thus, we identify Neisseria species as pathobionts in bronchiectasis, allowing for improved risk stratification in this high-risk group.Published versio

    Recent advances in understanding and managing asthma [version 1; referees: 2 approved]

    No full text
    This review highlights the important articles published in the area of asthma research from January 2015 to July 2016. In basic science, significant advances have been made in understanding the link between the innate immune response and type II acquired immune responses in asthma and the role of the airway epithelium. Novel information continues to emerge with regard to the pathogenesis and heterogeneity of severe asthma. There have been important translational clinical trials in the areas of childhood asthma, treatment of allergy to improve asthma outcomes, and improving drug delivery to optimize the management of asthma. In addition, there are increasing data concerning the application of biological agents to the management of severe asthma. This body of work discusses the most notable advances in the understanding and management of asthma

    Why are people with asthma more susceptible to influenza?

    No full text

    Innate Immunity and Immune Evasion by Enterovirus 71

    No full text
    Enterovirus 71 (EV71) is a major infectious disease affecting millions of people worldwide and it is the main etiological agent for outbreaks of hand foot and mouth disease (HFMD). Infection is often associated with severe gastroenterological, pulmonary, and neurological diseases that are most prevalent in children. Currently, no effective vaccine or antiviral drugs exist against EV71 infection. A lack of knowledge on the molecular mechanisms of EV71 infection in the host and the virus-host interactions is a major constraint to developing specific antiviral strategies against this infection. Previous studies have identified and characterized the function of several viral proteins produced by EV71 that interact with the host innate immune proteins, including type I interferon signaling and microRNAs. These interactions eventually promote efficient viral replication and increased susceptibility to the disease. In this review we discuss the functions of EV71 viral proteins in the modulation of host innate immune responses to facilitate viral replication

    Asthmatic bronchial epithelial cells have a deficient innate immune response to infection with rhinovirus

    Get PDF
    Rhinoviruses are the major trigger of acute asthma exacerbations and asthmatic subjects are more susceptible to these infections. To investigate the underlying mechanisms of this increased susceptibility, we examined virus replication and innate responses to rhinovirus (RV)-16 infection of primary bronchial epithelial cells from asthmatic and healthy control subjects.Viral RNA expression and late virus release into supernatant was increased 50- and 7-fold, respectively in asthmatic cells compared with healthy controls. Virus infection induced late cell lysis in asthmatic cells but not in normal cells. Examination of the early cellular response to infection revealed impairment of virus induced caspase 3/7 activity and of apoptotic responses in the asthmatic cultures. Inhibition of apoptosis in normal cultures resulted in enhanced viral yield, comparable to that seen in infected asthmatic cultures. Examination of early innate immune responses revealed profound impairment of virus-induced interferon-Ăź mRNA expression in asthmatic cultures and they produced &gt;2.5 times less interferon-Ăź protein. In infected asthmatic cells, exogenous interferon-Ăź induced apoptosis and reduced virus replication, demonstrating a causal link between deficient interferon-Ăź, impaired apoptosis and increased virus replication. These data suggest a novel use for type I interferons in the treatment or prevention of virus-induced asthma exacerbations

    IFN-?–induced protein 10 is a novel biomarker of rhinovirus-induced asthma exacerbations

    No full text
    Background: Rhinovirus-induced acute asthma is the most frequent trigger for asthma exacerbations.Objective: We assessed which inflammatory mediators were released from bronchial epithelial cells (BECs) after infection with rhinovirus and then determined whether they were also present in subjects with acute virus-induced asthma, with the aim to identify a biomarker or biomarkers for acute virusinduced asthma.Methods: BECs were obtained from bronchial brushings of steroid-naive asthmatic subjects and healthy nonatopic control subjects. Cells were infected with rhinovirus 16. Inflammatory mediators were measured by means of flow cytometry with a cytometric bead array. Subjects with acute asthma and virus infection were recruited; they were characterized clinically by using lung function tests and had blood taken to measure the inflammatory mediators identified as important by the BEC experiments.Results: IFN-g–induced protein 10 (IP-10) and RANTES were released in the greatest quantities, followed by IL-6, IL-8, and TNF-a. Dexamethasone treatment of BECs only partially suppressed IP-10 and TNF-a but was more effective at suppressing RANTES, IL-6, and IL-8. In acute clinical asthma serum IP-10 levels were increased to a greater extent in those with acute virus-induced asthma (median of 604 pg/mL compared with 167 pg/mL in those with non–virus-induced acute asthma, P &lt;.01). Increased serum IP-10 levels were predictive of virus-induced asthma (odds ratio, 44.3 [95% CI, 3.9-100.3]). Increased serum IP-10 levels were strongly associated with more severe airflow obstruction (r520.8; P &lt; .01).Conclusions: IP-10 release is specific to acute virus-induced asthma.Clinical implications: Measurement of serum IP-10 could be used to predict a viral trigger to acute asthma

    Impaired Th1 responses in patients with acute exacerbations of COPD are improved with PD-1 blockade

    No full text
    Poor T-cell function is implicated in susceptibility to infections in COPD patients. Proportion of circulating PD-1+ CD4+ T-cells is elevated in AECOPD patients. Systemic inflammation is associated with elevated proportion of PD-1+ CD4+ T-cells. PD-1 blockade increased the production of IFNÎł, TNF, IL-6 and IL-10 by anti-CD3-induced PBMC

    The Effects of Increasing Fruit and Vegetable Intake in Children with Asthma on the Modulation of Innate Immune Responses

    No full text
    Children with asthma are at risk of acute exacerbations triggered mainly by viral infections. A diet high in fruit and vegetables (F&V), a rich source of carotenoids, may improve innate immune responses in children with asthma. Children with asthma (3–11 years) with a history of exacerbations and low F&V intake (≤3 serves/d) were randomly assigned to a high F&V diet or control (usual diet) for 6 months. Outcomes included respiratory-related adverse events and in-vitro cytokine production in peripheral blood mononuclear cells (PBMCs), treated with rhinovirus-1B (RV1B), house dust mite (HDM) and lipopolysaccharide (LPS). During the trial, there were fewer subjects with ≥2 asthma exacerbations in the high F&V diet group (n = 22) compared to the control group (n = 25) (63.6% vs. 88.0%, p = 0.049). Duration and severity of exacerbations were similar between groups. LPS-induced interferon (IFN)-γ and IFN-λ production showed a small but significant increase in the high F&V group after 3 months compared to baseline (p < 0.05). Additionally, RV1B-induced IFN-λ production in PBMCs was positively associated with the change in plasma lycopene at 6 months (r(s) = 0.35, p = 0.015). A high F&V diet reduced asthma-related illness and modulated in vitro PBMC cytokine production in young children with asthma. Improving diet quality by increasing F&V intake could be an effective non-pharmacological strategy for preventing asthma-related illness by enhancing children’s innate immune responses

    Role of deficient type III interferon-? production in asthma exacerbations

    No full text
    Rhinoviruses are the major cause of asthma exacerbations, and asthmatics have increased susceptibility to rhinovirus and risk of invasive bacterial infections. Here we show deficient induction of interferon-?s by rhinovirus in asthmatic primary bronchial epithelial cells and alveolar macrophages, which was highly correlated with severity of rhinovirus-induced asthma exacerbation and virus load in experimentally infected human volunteers. Induction by lipopolysaccharide in asthmatic macrophages was also deficient and correlated with exacerbation severity. These results identify previously unknown mechanisms of susceptibility to infection in asthma and suggest new approaches to prevention and/or treatment of asthma exacerbations
    corecore