4 research outputs found

    Arginine- but not alanine-rich carboxy-termini trigger nuclear translocation of mutant keratin 10 in ichthyosis with confetti

    Get PDF
    Ichthyosis with confetti (IWC) is a genodermatosis associated with dominant-negative variants in keratin 10 (KRT10) or keratin 1 (KRT1). These frameshift variants result in extended aberrant proteins, localized to the nucleus rather than the cytoplasm. This mislocalization is thought to occur as a result of the altered carboxy (C)-terminus, from poly-glycine to either a poly-arginine or -alanine tail. Previous studies on the type of C-terminus and subcellular localization of the respective mutant protein are divergent. In order to fully elucidate the pathomechanism of IWC, a greater understanding is critical. This study aimed to establish the consequences for localization and intermediate filament formation of altered keratin 10 (K10) C-termini. To achieve this, plasmids expressing distinct KRT10 variants were generated. Sequences encoded all possible reading frames of the K10 C-terminus as well as a nonsense variant. A keratinocyte line was transfected with these plasmids. Additionally, gene editing was utilized to introduce frameshift variants in exon 6 and exon 7 at the endogenous KRT10 locus. Cellular localization of aberrant K10 was observed via immunofluorescence using various antibodies. In each setting, immunofluorescence analysis demonstrated aberrant nuclear localization of K10 featuring an arginine-rich C-terminus. However, this was not observed with K10 featuring an alanine-rich C-terminus. Instead, the protein displayed cytoplasmic localization, consistent with wild-type and truncated forms of K10. This study demonstrates that, of the various 3' frameshift variants of KRT10, exclusively arginine-rich C-termini lead to nuclear localization of K10

    Activation of survival pathways in the degenerating retina of rd10 mice

    Full text link
    Blinding diseases of the retina are frequently characterized by loss of photoreceptor cells. The retinal degeneration 10 (rd10) mouse expresses a mutant form of rod phosphodiesterase leading to autosomal recessive photoreceptor degeneration. In contrast to rd1, rd10 mice have remaining rod function mimicking more closely most forms of human Retinitis Pigmentosa. Here we use morphology, biochemistry, retinal whole mounts, real-time PCR, Western blotting and immunofluorescence to compile a comprehensive report on progression of retinal degeneration in the rd10 retina up to one year of age. We show that retinal development, morphology, gene expression pattern and retinal vasculature was normal until postnatal day 15. Thereafter, a bi-phasic pattern of rod cell death emerged with a first rapid phase peaking around 3 weeks of age followed by a slower second phase. Death of cone cells followed with a delay and vessel dropout was prominent in the retinal periphery of 6 months old rd10 mice. At one year of age, RPE atrophy was evident. The degenerating retina rapidly induced expression of transcriptional regulators Atf3 and Cebpd. Induction of Atf3 was transient and lasted only for several days at the beginning of degeneration whereas levels of Cebpd remained elevated throughout the period of photoreceptor loss. Several protective genes such as Lif, Edn2 and Fgf2 which are implicated in a potent endogenous survival pathway, and Mt1 and Mt2 were strongly upregulated in the rd10 retina. In addition, increased expression of Casp1 and Il1b suggested an inflammatory response
    corecore