39 research outputs found

    The academy for future science faculty:randomized controlled trial of theory-driven coaching to shape development and diversity of early-career scientists

    Get PDF
    Background: Approaches to training biomedical scientists have created a talented research community. However, they have failed to create a professional workforce that includes many racial and ethnic minorities and women in proportion to their representation in the population or in PhD training. This is particularly true at the faculty level. Explanations for the absence of diversity in faculty ranks can be found in social science theories that reveal processes by which individuals develop identities, experiences, and skills required to be seen as legitimate within the profession. Methods/Design: Using the social science theories of Communities of Practice, Social Cognitive Career Theory, identity formation, and cultural capital, we have developed and are testing a novel coaching-based model to address some of the limitations of previous diversity approaches. This coaching intervention (The Academy for Future Science Faculty) includes annual in-person meetings of students and trained faculty Career Coaches, along with ongoing virtual coaching, group meetings and communication. The model is being tested as a randomized controlled trial with two cohorts of biomedical PhD students from across the U.S., one recruited at the start of their PhDs and one nearing completion. Stratification into the experimental and control groups, and to coaching groups within the experimental arms, achieved equal numbers of students by race, ethnicity and gender to the extent possible. A fundamental design element of the Academy is to teach and make visible the social science principles which highly influence scientific advancement, as well as acknowledging the extra challenges faced by underrepresented groups working to be seen as legitimate within the scientific communities. Discussion: The strategy being tested is based upon a novel application of the well-established principles of deploying highly skilled coaches, selected and trained for their ability to develop talents of others. This coaching model is intended to be a complement, rather than a substitute, for traditional mentoring in biomedical research training, and is being tested as such

    Breaking the Cyber Kill Chain by Modelling Resource Costs

    Get PDF
    To combat cybercrime, a clearer understanding of the attacks and the offenders is necessary. When there is little available data about attack incidents, which is usually the case for new technology, one can make estimations about the necessary investments an offender would need to compromise the system. The next step would be to implement measures that increase these costs to a level that makes the attack unattractive. Our research method follows the principles of design science, where cycles of research activities are used to create artefacts intended to solve real-world problems. Our artefacts are an approach for creating a resource costs model (RCM) and an accompanying modelling tool implemented as a web application. These are used to find the required attacker resources at each stage of the cyber kill chain. End user feedback show that structured visualisation of the required resources raises the awareness of the cyberthreat. This approach has its strength and provides best accuracy with specific attacks, but is more limited when there are many possible attack vectors of different types

    Status of the down-regulated canine testis using two different GNRH agonist implants in comparison with the juvenile testis

    Full text link
    Testicular function in the dog was down-regulated using two different GNRH agonist implants, with adult and juvenile testes serving as controls. Treatment resulted in an increased percentage of the interstitial area and decreased area of Leydig cell nuclei. Expression of StAR and the steroidogenic enzymes cytochrome P450 side-chain cleavage enzyme (P450scc, CYP11A1) and cytochrome P450 17α-hydroxylase-17,20-lyase (P450c17, CYP17A1) in Leydig cells was blocked at the mRNA and protein level, showing no differences between the two agonists. Staining for androgen receptor (AR) by immunohistochemistry was positive in Sertoli, Leydig and peritubular cells and some spermatogonia, with in situ hybridization confirming expression in Sertoli cells. At the mRNA level, expression of AR was not affected; however, translation was blocked (reduced percentage of AR-positive Sertoli cells), with the number of nuclei in basal position being decreased. In the juvenile testes, mRNA expression of StAR, CYP11A1 and CYP17A1 was higher compared with the other groups but distinctly lower for the AR. At the protein level, the expression was at the limit of detection for StAR; AR-positive Sertoli cells were not detected. Our observations show that the down-regulated testis is different from the juvenile one rather resembling the testicular status in seasonal breeders out of season
    corecore