17 research outputs found

    Banner News

    Get PDF
    https://openspace.dmacc.edu/banner_news/1107/thumbnail.jp

    Des Moines Area Community College Creative Writing Contest 1976-2001

    Get PDF
    Award-Winning Works For the Academic Year · 2000-2001https://openspace.dmacc.edu/creativewriting/1002/thumbnail.jp

    High Rates of Human Immunodeficiency Virus Type 1 Recombination: Near-Random Segregation of Markers One Kilobase Apart in One Round of Viral Replication

    No full text
    One of the genetic consequences of packaging two copies of full-length viral RNA into a single retroviral virion is frequent recombination during reverse transcription. Many of the currently circulating strains of human immunodeficiency virus type 1 (HIV-1) are recombinants. Recombination can also accelerate the generation of multidrug-resistant HIV-1 and therefore presents challenges to effective antiviral therapy. In this study, we determined that HIV-1 recombination rates with markers 1.0, 1.3, and 1.9 kb apart were 42.4, 50.4, and 47.4% in one round of viral replication. Because the predicted recombination rate of two unlinked markers is 50%, we conclude that markers 1 kb apart segregated in a manner similar to that for two unlinked markers in one round of retroviral replication. These recombination rates are exceedingly high even among retroviruses. Recombination rates of markers separated by 1 kb are 4 and 4.7% in one round of spleen necrosis virus and murine leukemia virus replication, respectively. Therefore, HIV-1 recombination can be 10-fold higher than that of other retroviruses. Recombination can be observed only in the proviruses derived from heterozygous virions that contain two genotypically different RNAs. The high rates of HIV-1 recombination observed in our studies also indicate that heterozygous virions are formed efficiently during HIV-1 replication and most HIV-1 virions are capable of undergoing recombination. Our results demonstrate that recombination is an effective mechanism to break the genetic linkage between neighboring sequences, thereby reassorting the HIV-1 genome and increasing the diversity in the viral population

    Phase II study of neoadjuvant checkpoint blockade in patients with surgically resectable undifferentiated pleomorphic sarcoma and dedifferentiated liposarcoma

    No full text
    Abstract Background Soft tissue sarcomas are a heterogeneous and rare group of solid tumors of mesenchymal origin that can arise anywhere in the body. Although surgical resection is the mainstay of treatment for patients with localized disease, disease recurrence is common and 5-year overall survival is poor (~ 65%). Both radiation therapy and conventional chemotherapy are used to reduce local and distant recurrence. However, the utility of radiation therapy is often limited by disease location (in the case of retroperitoneal sarcomas, for instance) while systemic therapy with conventional lines of chemotherapy offer limited efficacy and are often poorly tolerated and associated with significant toxicity. Within the past decade, major advances have been made in the treatment of other malignancies including melanoma, renal cell carcinoma, and non-small cell lung carcinoma with the advent of immune-checkpoint inhibitors such as ipilimumab (anti-CTLA4), pembrolizumab (anti-PD1), and nivolumab (anti-PD1). The recently published SARC028 (NCT02301039), an open label, phase II, multicenter trial of pembrolizumab in patients with advanced bone and soft tissue sarcomas reported promising activity in select histologic subtypes of advanced STS, including undifferentiated pleomorphic sarcoma and dedifferentiated liposarcoma. Methods There is a clear need for novel and effective adjuncts in the treatment of STS. We hypothesize that immune checkpoint blockade will be effective in patients with surgically resectable primary or locally recurrent dedifferentiated liposarcoma and undifferentiated pleomorphic sarcoma when administered in the neoadjuvant setting. The primary aim of this phase II, single-center, open label, randomized non-comparative trial is to determine the pathologic response to neoadjuvant nivolumab monotherapy and combination nivolumab/ipilimumab in patients with resectable dedifferentiated liposarcoma of the retroperitoneum or undifferentiated pleomorphic sarcoma of the trunk or extremity treated with concurrent standard of care neoadjuvant radiation therapy. Discussion This study will help define the role of single agent anti-PD1 and combination anti-CTLA4 and anti-PD1 therapy in patients with surgically resectable dedifferentiated liposarcoma and undifferentiated pleomorphic sarcoma. Trial registration ClinicalTrials.gov NCT03307616, registered October 12, 2017
    corecore