8 research outputs found

    Osseointegration of a novel injection molded 2-piece ceramic dental implant : a study in minipigs

    No full text
    Objectives: This study compared the osseointegrative potential of a novel injection molded zirconia dental implant (Neodent Zi ceramic implant, test) and a commercially available titanium implant (Neodent Alvim implant, control) in terms of histomorphometrically derived bone-to-implant contact (BIC), first bone-to-implant contact (fBIC), and the ratio of bone area to total area (BATA) around the implant. Materials and methods: A total of 36 implants, 18 per individual test device, were implanted in a split-mouth arrangement in either side of the edentulous and fully healed mandible of 6 minipigs. Histomorphometric analysis of BIC, fBIC, and BATA were performed 8 weeks post implantation and subjected to statistical non-inferiority testing. Surface characteristics of both implant types were compared in terms of contact angle, surface topography, and elemental composition. Results: BIC, fBIC, and coronal BATA values of test and control implants were statistically comparable and non-inferior. BIC values of 77.8 ± 6.9% vs. 80.7 ± 6.9% (p = 0.095) were measured for the test and control groups. fBIC lingual values were − 238 ± 328 μm compared with − 414 ± 511 μm (p = 0.121) while buccal values were − 429 ± 648 μm and − 588 ± 550 μm (p = 0.230) for the test and control devices, respectively. BATA in the apical segment was significantly higher in the test group compared with the control group (67.2 ± 11.8% vs. 59.1 ± 11.4%) (p = 0.0103). Surface topographies of both implant types were comparable. Surface chemical analysis indicated the presence of carbonaceous adsorbates which correlated with a comparable and predominantly hydrophobic character of the implants. Conclusion: The results demonstrate that the investigated zirconia implants, when compared with a commercially available titanium implant, show equivalent and non-inferior bone integration, bone formation, and alveolar bone level maintenance. This qualifies the investigated zirconia implant as a potential candidate for clinical development. Clinical relevance: This study investigated the osseointegration of a novel zirconia 2-piece dental implant prototype intended for clinical development. With the aim of translating this prototype into clinical development preclinical models, procedures and materials within this study have been selected as close to clinical practice and human physiological conditions as possible

    Peri-implant bone preservation of a novel, self-cutting, and fully tapered implant in the healed crestal ridge of minipigs: submerged vs. transgingival healing.

    No full text
    OBJECTIVES The aim of this study was to assess the influence of transgingival compared with submerged healing on peri-implant bone maintenance around a novel, fully tapered implant in a healed crestal ridge in minipigs. MATERIALS AND METHODS In each of 12 minipigs, two implants (Straumann® BLX, Roxolid® SLActive®, Ø 3.75 × 8 mm) were placed. Implants were either left for submerged or for transgingival healing for 12 weeks. Measurements performed were bone-to-implant contact (BIC), first bone-to-implant contact (fBIC), bone area to total area (BATA), perpendicular bone crest to implant shoulder (pCIS), bone height change from placement, and bone overgrowth (for submerged implants). RESULTS No significant differences were found between transgingival and submerged healing in any of the measured parameters, except for BATA on the buccal aspect in which significantly more bone formation was found for the transgingival healing group. For both groups, there was a gain in crestal bone height during the 12-week healing period. CONCLUSIONS Loaded compared with unloaded implants displayed comparable levels of osseointegration and equivalent marginal bone levels. This qualifies the implant placement protocol with respect to the osteotomy dimensions and subcrestal placement protocol for immediate loading. CLINICAL RELEVANCE The here presented results related to osseointegration and crestal bone maintenance after submerged or transgingival healing have demonstrated a high level of consistency in the used in vivo translational model. The obtained results support the translation of the novel implant type in conjunction with the developed surgical workflow and placement protocol into further clinical investigation and use

    A potential renewed use of very heavy ions for therapy: Neon minibeam radiation therapy

    No full text
    (1) Background: Among all types of radiation, very heavy ions, such as Neon (Ne) or Argon (Ar), are the optimum candidates for hypoxic tumor treatments due to their reduced oxygen enhance-ment effect. However, their pioneering clinical use in the 1970s was halted due to severe side effects. The aim of this work was to provide a first proof that the combination of very heavy ions with minibeam radiation therapy leads to a minimization of toxicities, and thus, opening the door for a renewed use of heavy ions for therapy; (2) Methods: Mouse legs were irradiated with either Ne MBRT or Ne broad beams at the same average dose. Skin toxicity was scored for a period of 4 weeks. Histopathology evaluations were carried out at the end of the study; (3) Results: A significant dif-ference in toxicity was observed between the two irradiated groups. While severe damage, in-cluding necrosis, was observed in the broad beam group, only light to mild erythema was present in the MBRT group; (4) Conclusion: Ne MBRT is significantly better tolerated than conventional broad beam irradiations

    First Evaluation of Temporal and Spatial Fractionation in Proton Minibeam Radiation Therapy of Glioma-Bearing Rats

    No full text
    International audienceBackground: Proton minibeam radiation therapy (pMBRT) is a new radiotherapy technique using spatially modulated narrow proton beams. pMBRT results in a significantly reduced local tissue toxicity while maintaining or even increasing the tumor control efficacy as compared to conventional radiotherapy in small animal experiments. In all the experiments performed up to date in tumor bearing animals, the dose was delivered in one single fraction. This is the first assessment on the impact of a temporal fractionation scheme on the response of glioma-bearing animals to pMBRT.Methods: glioma-bearing rats were irradiated with pMBRT using a crossfire geometry. The response of the irradiated animals in one and two fractions was compared. An additional group of animals was also treated with conventional broad beam irradiations.Results: pMBRT delivered in two fractions at the biological equivalent dose corresponding to one fraction resulted in the highest median survival time, with 80% long-term survivors free of tumors. No increase in local toxicity was noted in this group with respect to the other pMBRT irradiated groups. Conventional broad beam irradiations resulted in the most severe local toxicity.Conclusion: Temporal fractionation increases the therapeutic index in pMBRT and could ease the path towards clinical trials

    A Potential Renewed Use of Very Heavy Ions for Therapy : Neon Minibeam Radiation Therapy

    Get PDF
    The treatment of hypoxic tumours continues to be one of the main challenges for radiation therapy. Minibeam radiation therapy (MBRT) shows a highly promising reduction of to-xicity in normal tissue, so that very heavy ions, such as Neon (Ne) or Argon (Ar), with extremely high LET, might become applicable to clinical situations. The high LET in the target would be unrivalled to overcome hypoxia, while MBRT might limit the side effects normally preventing the use of those heavy ions in a conventional radiotherapeutic setting. The work reported in this manuscript is the first experimental proof of the remarkable reduction of normal tissue (skin) toxicities after Ne MBRT irradiations as compared to conventional Ne irradiations. This result might allow for a renewed use of very heavy ions for cancer therapy. (1) Background: among all types of radiation, very heavy ions, such as Neon (Ne) or Argon (Ar), are the optimum candidates for hypoxic tumor treatments due to their reduced oxygen enhancement effect. However, their pioneering clinical use in the 1970s was halted due to severe side effects. The aim of this work was to provide a first proof that the combination of very heavy ions with minibeam radiation therapy leads to a minimization of toxicities and, thus, opening the door for a renewed use of heavy ions for therapy; (2) Methods: mouse legs were irradiated with either Ne MBRT or Ne broad beams at the same average dose. Skin toxicity was scored for a period of four weeks. Histopathology evaluations were carried out at the end of the study; (3) Results: a significant difference in toxicity was observed between the two irradiated groups. While severe da-mage, including necrosis, was observed in the broad beam group, only light to mild erythema was present in the MBRT group; (4) Conclusion: Ne MBRT is significantly better tolerated than conventional broad beam irradiations

    A Potential Renewed Use of Very Heavy Ions for Therapy: Neon Minibeam Radiation Therapy

    Get PDF
    International audience(1) Background: among all types of radiation, very heavy ions, such as Neon (Ne) or Argon (Ar), are the optimum candidates for hypoxic tumor treatments due to their reduced oxygen enhancement effect. However, their pioneering clinical use in the 1970s was halted due to severe side effects. The aim of this work was to provide a first proof that the combination of very heavy ions with minibeam radiation therapy leads to a minimization of toxicities and, thus, opening the door for a renewed use of heavy ions for therapy; (2) Methods: mouse legs were irradiated with either Ne MBRT or Ne broad beams at the same average dose. Skin toxicity was scored for a period of four weeks. Histopathology evaluations were carried out at the end of the study; (3) Results: a significant difference in toxicity was observed between the two irradiated groups. While severe da-mage, including necrosis, was observed in the broad beam group, only light to mild erythema was present in the MBRT group; (4) Conclusion: Ne MBRT is significantly better tolerated than conventional broad beam irradiations.</jats:p
    corecore