12,164 research outputs found

    Southwest Research Institute assistance to NASA in biomedical areas of the technology utilization program Cumulative quarterly report, 1 Oct. 1967 - 31 Mar. 1968

    Get PDF
    Quarterly operations summary of center for selective dissemination of biomedical information within Technology Utilization progra

    Topological Crystalline Bose Insulator in Two Dimensions via Entanglement Spectrum

    Full text link
    Strongly correlated analogues of topological insulators have been explored in systems with purely on-site symmetries, such as time-reversal or charge conservation. Here, we use recently developed tensor network tools to study a quantum state of interacting bosons which is featureless in the bulk, but distinguished from an atomic insulator in that it exhibits entanglement which is protected by its spatial symmetries. These properties are encoded in a model many-body wavefunction that describes a fully symmetric insulator of bosons on the honeycomb lattice at half filling per site. While the resulting integer unit cell filling allows the state to bypass `no-go' theorems that trigger fractionalization at fractional filling, it nevertheless has nontrivial entanglement, protected by symmetry. We demonstrate this by computing the boundary entanglement spectra, finding a gapless entanglement edge described by a conformal field theory as well as degeneracies protected by the non-trivial action of combined charge-conservation and spatial symmetries on the edge. Here, the tight-binding representation of the space group symmetries plays a particular role in allowing certain entanglement cuts that are not allowed on other lattices of the same symmetry, suggesting that the lattice representation can serve as an additional symmetry ingredient in protecting an interacting topological phase. Our results extend to a related insulating state of electrons, with short-ranged entanglement and no band insulator analogue.Comment: 18 pages, 13 figures Added additional reference

    Single Photon Source with Individualized Single Photon Certifications

    Get PDF
    As currently implemented, single-photon sources cannot be made to produce single photons with high probability, while simultaneously suppressing the probability of yielding two or more photons. Because of this, single photon sources cannot really produce single photons on demand. We describe a multiplexed system that allows the probabilities of producing one and more photons to be adjusted independently, enabling a much better approximation of a source of single photons on demand. The scheme uses a heralded photon source based on parametric downconversion, but by effectively breaking the trigger detector area into multiple regions, we are able to extract more information about a heralded photon than is possible with a conventional arrangement. This scheme allows photons to be produced along with a quantitative ``certification'' that they are single photons. Some of the single-photon certifications can be significantly better than what is possible with conventional downconversion sources (using a unified trigger detector region), as well as being better than faint laser sources. With such a source of more tightly certified single photons, it should be possible to improve the maximum secure bit rate possible over a quantum cryptographic link. We present an analysis of the relative merits of this method over the conventional arrangement.Comment: 11 pages, 5 figures, SPIE Free-Space Laser Communication and Laser Imaging II. To appear in the proceeding of SPIE Free-Space Laser Communication and Laser Imaging II, vol 482

    Interactions between the endocrine and immune systems in locusts

    Get PDF
    The prophenoloxidase cascade in the haemolymph of mature adult Locusta migratoria migratorioides (R & F) is activated in response to injection of laminarin, a -1,3 glucan. Co-injection of adipokinetic hormone-I (Lom-AKH-I) and laminarin prolongs the activation of the enzyme in a dose-dependent manner. However, injections of bacterial lipopolysaccharide (LPS) do not activate prophenoloxidase unless AKH is co-injected, when there is a dose-dependent increase in the level of phenoloxidase that persists in the haemolymph for several hours. Even when AKH is co-injected, the highest levels of phenoloxidase activity are always greater after injection of laminarin than after LPS, and these two immunogens must activate the prophenoloxidase cascade by quite distinct pathways. In the present study, interactions between the endocrine and immune systems were examined with respect to activation of prophenoloxidase and the formation of nodules: injection of LPS induces nodule formation in adult locusts. With LPS from Pseudomonas aeruginosa, nodules form exclusively in dense accumulations in the anterior portion of the abdomen on either side of the dorsal blood vessel associated with the dorsal diaphragm. However, with LPS from Escherichia coli, fewer nodules are formed but with a similar distribution, except that occasionally some nodules are aligned additionally on either side of the ventral nerve cord. Co-injection of Lom-AKH-I with LPS from either bacteria stimulates greater numbers of nodules to be formed. This effect of coinjection of AKH on nodule formation is seen at low doses of hormone with only 0.3 or 0.4 pmol of Lom-AKH-1, respectively, increasing the number of nodules by 50%. Injections of octopamine or 5-hydroxytryptamine do not mimic either of the actions of Lom-AKH-I described here. Co-injection of an angiotensin-converting enzyme inhibitor, captopril, reduces nodule formation in response to injections of LPS but has no effect on the activation of phenoloxidase. Co-injection of an inhibitor of eicosanoid synthesis, dexamethasone, with LPS influences nodule formation (with or without AKH) in different ways according to the dose of dexamethasone used, but does not affect activation of prophenoloxidase. Eicosanoid synthesis is important for nodule formation, but not for the activation of the prophenoloxidase cascade in locust haemolymph

    PHYS 121N.02: General Physics I

    Get PDF

    PHSX 207N.01: College Physics II

    Get PDF

    PHYS 121N.02: General Physics I

    Get PDF

    PHYS 422.01: Optics I

    Get PDF

    PHSX 101.01: Freshman Physics Experience

    Get PDF

    PHSX 343.01: Modern Physics

    Get PDF
    corecore