5,851 research outputs found

    Foreword

    Get PDF
    While several studies have explored how short-term ecological responses to disturbance vary among ecosystems, experimental studies of how contrasting ecosystems recover from disturbance in the longer term are few. We performed a simple long-term experiment on each of 30 contrasting forested islands in northern Sweden that vary in size; as size decreases, time since fire increases, soil fertility and ecosystem productivity declines, and plant species diversity increases. We predicted that resilience of understory plant community properties would be greatest on the larger, more productive islands, and that this would be paralleled by greater resilience of soil biotic and abiotic properties. For each island, we applied three disturbance treatments of increasing intensity to the forest understory once in 1998, i.e., light trimming, heavy trimming, and burning; a fourth treatment was an undisturbed control. We measured recovery of the understory vascular plant community annually over the following 14 years, and at that time also assessed recovery of mosses and several belowground variables. Consistent with our predictions, vascular plant whole-community variables (total cover, species richness, diversity [Shannon's HI, and community composition) recovered significantly more slowly on the smaller (least fertile) than the larger islands, but this difference was not substantial, and only noticeable in the most severely disturbed treatment. When an index of resilience was used, we were unable to detect effects of island size on the recovery of any property. We found that mosses and one shrub species (Empetrum hermaphroditum) recovered particularly slowly, and the higher abundance of this shrub on small islands was sufficient to explain any slower recovery of whole-ecosystem variables on those islands. Further, several belowground variables had not fully recovered from the most intense disturbance after 14 yr, and counter to our predictions, the degree of their recovery was never influenced by island size. While several studies have shown large variation among plant communities in their short-term response (notably resistance) to environmental perturbations, our results reveal that when perturbations are applied equally to highly contrasting ecosystems, differences in resilience among them in the longer term can be relatively minor, regardless of the severity of disturbance

    Lichen specific thallus mass and secondary compounds change across a retrogressive fire-driven chronosequence

    Get PDF
    In the long-term absence of major disturbances ecosystems enter a state of retrogression, which involves declining soil fertility and consequently a reduction in decomposition rates. Recent studies have looked at how plant traits such as specific leaf mass and amounts of secondary compounds respond to declining soil fertility during retrogression, but there are no comparable studies for lichen traits despite increasing recognition of the role that lichens can play in ecosystem processes. We studied a group of 30 forested islands in northern Sweden differing greatly in fire history, and collectively representing a retrogressive chronosequence, spanning 5000 years. We used this system to explore how specific thallus mass (STM) and carbon based secondary compounds (CBSCs) change in three common epiphytic lichen species (Hypogymnia phsyodes, Melanohalea olivacea and Parmelia sulcata) as soil fertility declines during this retrogression. We found that STMs of lichens increased sharply during retrogression, and for all species soil N to P ratio (which increased during retrogression) was a strong predictor of STM. When expressed per unit area, medullary CBSCs in all species and cortical CBSCs in P. sulcata increased during retrogression. Meanwhile, when expressed per unit mass, only cortical CBSCs in H. physodes responded to retrogression, and in the opposite direction. Given that lichen functional traits are likely to be important in driving ecological processes that drive nutrient and carbon cycling in the way that plant functional traits are, the changes that they undergo during retrogression could potentially be significant for the functioning of the ecosystem

    Prosocial and antisocial children's perceptions of peers' motives for prosocial behaviours

    Get PDF
    This study investigated whether peer-nominated prosocial and antisocial children have different perceptions of the motives underlying peers' prosocial actions. Eighty-seven children, aged 10-12 years old, completed peer-nomination measures of social behaviour. On the basis of numbers of social nominations received, a subsample of 51 children (32 who were peer-nominated as 'prosocial', and 18 who were peer-nominated as 'antisocial') then recorded their perceptions of peers' motives for prosocial behaviours. Expressed motives were categorized predominantly into three categories, coinciding with Turiel's (1978) 'moral', 'conventional', and 'personal domains'. Results indicate that children's social reputation is associated with the extent to which they perceive peers' prosocial motives as 'personal' or 'moral', with more prosocial children attributing moral motives, and more antisocial children attributing personal motives. Although traditionally Turiel's domain theory has been used to understand 'antisocial' children's behaviour, the current findings suggest that 'prosocial' children's behaviour may also be related to domains of judgment

    The ecosystem and evolutionary contexts of allelopathy

    Get PDF
    Plants can release chemicals into the environment that suppress the growth and establishment of other plants in their vicinity, a process known as ‘allelopathy’. However, chemicals with allelopathic functions have other ecological roles, such as plant defense, nutrient chelation, and regulation of soil biota in ways that affect decomposition and soil fertility. These ecosystem-scale roles of allelopathic chemicals can augment, attenuate or modify their community-scale functions. In this review we explore allelopathy in the context of ecosystem properties, and through its role in exotic invasions consider how evolution might affect the intensity and importance of allelopathic interactions

    The use of chronosequences in studies of ecological succession and soil development

    Get PDF
    1. Chronosequences and associated space-for-time substitutions are an important and often necessary tool for studying temporal dynamics of plant communities and soil development across multiple time-scales. However, they are often used inappropriately, leading to false conclusions about ecological patterns and processes, which has prompted recent strong criticism of the approach. Here, we evaluate when chronosequences may or may not be appropriate for studying community and ecosystem development. 2. Chronosequences are appropriate to study plant succession at decadal to millennial time-scales when there is evidence that sites of different ages are following the same trajectory. They can also be reliably used to study aspects of soil development that occur between temporally linked sites over time-scales of centuries to millennia, sometimes independently of their application to shorter-term plant and soil biological communities. 3. Some characteristics of changing plant and soil biological communities (e.g. species richness, plant cover, vegetation structure, soil organic matter accumulation) are more likely to be related in a predictable and temporally linear manner than are other characteristics (e.g. species composition and abundance) and are therefore more reliably studied using a chronosequence approach. 4. Chronosequences are most appropriate for studying communities that are following convergent successional trajectories and have low biodiversity, rapid species turnover and low frequency and severity of disturbance. Chronosequences are least suitable for studying successional trajectories that are divergent, species-rich, highly disturbed or arrested in time because then there are often major difficulties in determining temporal linkages between stages. 5. Synthesis. We conclude that, when successional trajectories exceed the life span of investigators and the experimental and observational studies that they perform, temporal change can be successfully explored through the judicious use of chronosequences

    Linking vegetation change, carbon sequestration and biodiversity

    Get PDF
    1. Despite recent interest in linkages between above- and belowground communities and their consequences for ecosystem processes, much remains unknown about their responses to long-term ecosystem change. We synthesize multiple lines of evidence from a long-term ‘natural experiment’ to illustrate how ecosystem retrogression (the decline in ecosystem processes due to long-term absence of major disturbance) drives vegetation change, and thus aboveground and belowground carbon (C) sequestration, and communities of consumer biota. 2. Our study system involves 30 islands in Swedish boreal forest that form a 5000 year fire-driven retrogressive chronosequence. Here, retrogression leads to lower plant productivity and slower decomposition, and a community shift from plants with traits associated with resource acquisition to those linked with resource conservation. 3. We present consistent evidence that aboveground ecosystem C sequestration declines, while belowground and total C storage increases linearly for at least 5000 years following fire absence. This increase is driven primarily by changes in vegetation characteristics, impairment of decomposer organisms and absence of humus combustion. 4. Data from contrasting trophic groups show that during retrogression, biomass or abundance of plants and decomposer biota decreases, while that of aboveground invertebrates and birds increases, due to different organisms accessing resources via distinct energy channels. Meanwhile, diversity measures of vascular plants and aboveground (but not belowground) consumers respond positively to retrogression. 5. We show that taxonomic richness of plants and aboveground consumers are positively correlated with total ecosystem C storage, suggesting that conserving old growth forests simultaneously maximizes biodiversity and C sequestration. However, we find little observational or experimental evidence that plant diversity is a major driver of ecosystem C storage on the islands relative to other biotic and abiotic factors. 6. Synthesis. Our study reveals that across contrasting islands differing in exposure to a key extrinsic driver (historical disturbance regime and resulting retrogression), there are coordinated responses of soil fertility, vegetation, consumer communities, and ecosystem C sequestration, which all feed back to one another. It also highlights the value of well replicated natural experiments for tackling questions about aboveground-belowground linkages over temporal and spatial scales that are otherwise unachievable

    Changes in co-existence mechanisms along a long-term soil chronosequence revealed by functional trait diversity

    Get PDF
    1. Functional trait diversity can reveal mechanisms of species co-existence in plant communities. Few studies have tested whether functional diversity for foliar traits related to resource use strategy increases or decreases with declining soil phosphorus (P) in forest communities. 2. We quantified tree basal area and four foliar functional traits (i.e. nitrogen (N), phosphorus (P), thickness and tissue density) for all woody species along the c. 120 kyr Franz Josef soil chronosequence in cool temperate rainforest, where strong shifts occur in light and soil nutrient availability (i.e. total soil P declines from 805 to 100 mg g–1). We combined the abundance and trait data in functional diversity indices to quantify trait convergence and divergence, in an effort to determine whether mechanisms of co-existence change with soil fertility. 3. Relationships between species trait means and total soil N and P were examined using multiple regression, with and without weighting of species abundances. We used Rao’s quadratic entropy to quantify functional diversity at the plot scale, then compared this with random expectation, using a null model that randomizes abundances across species within plots. Taxonomic diversity was measured using Simpson’s Diversity. Relationships between functional and taxonomic diversity and total soil P were examined using jackknife linear regression. 4. Leaf N and P declined and leaf thickness and density increased monotonically with declining total soil P along the sequence; these relationships were unaffected by abundance-weighting of species in the analyses. Inclusion of total soil N did not improve predictions of trait means. All measures of diversity calculated from presence/absence data were unrelated to total soil N and P. There was no evidence for a relationship between Rao values using quantitative abundances and total soil P. However, there was a strongly positive relationship between Rao, expressed relative to random expectation, and total soil P, indicating trait convergence of dominant species as soil P declined. 5. Synthesis: Our results demonstrate that at high fertility dominant species differ in resource use strategy, but as soil fertility declines over the long-term, dominant species increasingly converge on a resource-retentive strategy. This suggests that differentiation in resource use strategy is required for co-existence at high fertility but not in low fertility ecosystems

    Downward shortwave surface irradiance from 17 sites for the FIRE/SRB Wisconsin experiment

    Get PDF
    A field experiment was conducted in Wisconsin during Oct. to Nov. 1986 for purposes of both intensive cirrus cloud measurments and SRB algorithm validation activities. The cirrus cloud measurements were part of the FIRE. Tables are presented which show data from 17 sites in the First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment/Surface Radiation Budget (FIRE/SRB) Wisconsin experiment region. A discussion of intercomparison results and calibration inconsistencies is also included

    Bryosphere Loss Impairs Litter Decomposition Consistently Across Moss Species, Litter Types, and Micro-Arthropod Abundance

    Get PDF
    The bryosphere (that is, ground mosses and their associated biota) is a key driver of nutrient and carbon dynamics in many terrestrial ecosystems, in part because it regulates litter decomposition. However, we have a poor understanding of how litter decomposition responds to changes in the bryosphere, including changes in bryosphere cover, moss species, and bryosphere-associated biota. Specifically, the contribution of micro-arthropods to litter decomposition in the bryosphere is unclear. Here, we used a 16-month litterbag field experiment in two boreal forests to investigate bryosphere effects on litter decomposition rates among two moss species (Pleurozium schreberi and Hylocomium splendens), and two litter types (higher-quality Betula pendula litter and lower-quality P. schreberi litter). Additionally, we counted all micro-arthropods in the litterbags and identified them to functional groups. We found that bryosphere removal reduced litter decomposition rates by 28% and micro-arthropod abundance by 29% and led to a colder micro-climate. Litter decomposition rates and micro-arthropod abundance were uncorrelated overall, but were positively correlated in B. pendula litterbags. Bryosphere effects on litter decomposition rates were consistent across moss species, litter types, and micro-arthropod abundances and community compositions. These findings suggest that micro-arthropods play a minor role in litter decomposition in the boreal forest floor, suggesting that other factors (for example, micro-climate, nutrient availability) likely drive the positive effect of the bryosphere on decomposition rates. Our results point to a substantial and consistent impairment of litter decomposition in response to loss of moss cover, which could have important implications for nutrient and carbon cycling in moss-dominated ecosystems

    Drivers of inter-year variability of plant production and decomposers across contrasting island ecosystems

    Get PDF
    Despite the likely importance of inter-year dynamics of plant production and consumer biota for driving community- and ecosystem-level processes, very few studies have explored how and why these dynamics vary across contrasting ecosystems. We utilized a well characterized system of 30 lake islands in the boreal forest zone of northern Sweden across which soil fertility and productivity vary considerably, with larger islands being more fertile and productive than smaller ones. In this system we assessed the inter-year dynamics of several measures of plant production and the soil microbial community (primary consumers in the decomposer food web) for each of 9 years, and soil microfaunal groups (secondary and tertiary consumers) for each of 6 of those years. We found that for measures of plant production and each of the three consumer trophic levels, inter-year dynamics were strongly affected by island size. Further, many variables were strongly affected by island size (and thus bottom-up regulation by soil fertility and resources) for some years but none in others, most likely due to inter-year variation in climatic conditions. For each of the plant and microbial variables for which we had 9 years of data, we also determined the inter-year coefficient of variation (CV), an inverse measure of stability. We found that CVs of some measures of plant productivity were greater on large islands while those of other measures were greater on smaller islands; CVs of microbial variables were unresponsive to island7 size. We also found that the effects of island size on the temporal dynamics of some variables were related to inter-year variability of macroclimatic variables. As such, our results show that the inter year dynamics of both plant productivity and decomposer biota across each of three trophic levels, as well as the inter-year stability of plant productivity, differs greatly across contrasting ecosystems, with potentially important but largely overlooked implications for community and ecosystem processes
    corecore