31 research outputs found

    Analytical formula for the Uehling potential

    Full text link
    The closed analytical expression for the Uehling potential is derived. The Uehling potential describes the lowest-order correction on vacuum polarisation in atomic and muon-atomic systems. We also derive the analytical formula for the interaction potential between two electrically charged point particles which includes correction to the vacuum polarisation, but has correct asymptotic behaviour at larger rr. Our three-term analytical formula for the Uehling potential opens a new avenue in the study of the vacuum polarisation in light atomic systems.Comment: arXiv admin note: substantial text overlap with arXiv:1103.204

    Novel genetic loci associated with hippocampal volume

    Get PDF
    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness

    Reproducibility in the absence of selective reporting : An illustration from large-scale brain asymmetry research

    Get PDF
    Altres ajuts: Max Planck Society (Germany).The problem of poor reproducibility of scientific findings has received much attention over recent years, in a variety of fields including psychology and neuroscience. The problem has been partly attributed to publication bias and unwanted practices such as p-hacking. Low statistical power in individual studies is also understood to be an important factor. In a recent multisite collaborative study, we mapped brain anatomical left-right asymmetries for regional measures of surface area and cortical thickness, in 99 MRI datasets from around the world, for a total of over 17,000 participants. In the present study, we revisited these hemispheric effects from the perspective of reproducibility. Within each dataset, we considered that an effect had been reproduced when it matched the meta-analytic effect from the 98 other datasets, in terms of effect direction and significance threshold. In this sense, the results within each dataset were viewed as coming from separate studies in an "ideal publishing environment," that is, free from selective reporting and p hacking. We found an average reproducibility rate of 63.2% (SD = 22.9%, min = 22.2%, max = 97.0%). As expected, reproducibility was higher for larger effects and in larger datasets. Reproducibility was not obviously related to the age of participants, scanner field strength, FreeSurfer software version, cortical regional measurement reliability, or regional size. These findings constitute an empirical illustration of reproducibility in the absence of publication bias or p hacking, when assessing realistic biological effects in heterogeneous neuroscience data, and given typically-used sample sizes

    The genetic architecture of the human cerebral cortex

    Get PDF
    INTRODUCTION The cerebral cortex underlies our complex cognitive capabilities. Variations in human cortical surface area and thickness are associated with neurological, psychological, and behavioral traits and can be measured in vivo by magnetic resonance imaging (MRI). Studies in model organisms have identified genes that influence cortical structure, but little is known about common genetic variants that affect human cortical structure. RATIONALE To identify genetic variants associated with human cortical structure at both global and regional levels, we conducted a genome-wide association meta-analysis of brain MRI data from 51,665 individuals across 60 cohorts. We analyzed the surface area and average thickness of the whole cortex and 34 cortical regions with known functional specializations. RESULTS We identified 306 nominally genome-wide significant loci (P < 5 × 10−8) associated with cortical structure in a discovery sample of 33,992 participants of European ancestry. Of the 299 loci for which replication data were available, 241 loci influencing surface area and 14 influencing thickness remained significant after replication, with 199 loci passing multiple testing correction (P < 8.3 × 10−10; 187 influencing surface area and 12 influencing thickness). Common genetic variants explained 34% (SE = 3%) of the variation in total surface area and 26% (SE = 2%) in average thickness; surface area and thickness showed a negative genetic correlation (rG = −0.32, SE = 0.05, P = 6.5 × 10−12), which suggests that genetic influences have opposing effects on surface area and thickness. Bioinformatic analyses showed that total surface area is influenced by genetic variants that alter gene regulatory activity in neural progenitor cells during fetal development. By contrast, average thickness is influenced by active regulatory elements in adult brain samples, which may reflect processes that occur after mid-fetal development, such as myelination, branching, or pruning. When considered together, these results support the radial unit hypothesis that different developmental mechanisms promote surface area expansion and increases in thickness. To identify specific genetic influences on individual cortical regions, we controlled for global measures (total surface area or average thickness) in the regional analyses. After multiple testing correction, we identified 175 loci that influence regional surface area and 10 that influence regional thickness. Loci that affect regional surface area cluster near genes involved in the Wnt signaling pathway, which is known to influence areal identity. We observed significant positive genetic correlations and evidence of bidirectional causation of total surface area with both general cognitive functioning and educational attainment. We found additional positive genetic correlations between total surface area and Parkinson’s disease but did not find evidence of causation. Negative genetic correlations were evident between total surface area and insomnia, attention deficit hyperactivity disorder, depressive symptoms, major depressive disorder, and neuroticism. CONCLUSION This large-scale collaborative work enhances our understanding of the genetic architecture of the human cerebral cortex and its regional patterning. The highly polygenic architecture of the cortex suggests that distinct genes are involved in the development of specific cortical areas. Moreover, we find evidence that brain structure is a key phenotype along the causal pathway that leads from genetic variation to differences in general cognitive function

    On the four-photon annihilation of the electron-positron pairs

    No full text
    The four-photon annihilation of electron-positron pairs is considered. In our treatment the energies of the colliding particles can be arbitrary. We also discuss the lower-energy limit of the cross-section of three-photon annihilation of the (e−,e+)(e^{-}, e^{+})-pair

    Femtosecond multidimensional imaging of a molecular dissociation

    No full text
    The coupled electronic and vibrational motions governing chemical processes are best viewed from the molecule's point of view—the molecular frame. Measurements made in the laboratory frame often conceal information because of the random orientations the molecule can take. We used a combination of time-resolved photoelectron spectroscopy, multidimensional coincidence imaging spectroscopy, and ab initio computation to trace a complete reactant-to-product pathway—the photodissociation of the nitric oxide dimer—from the molecule's point of view, on the femtosecond time scale. This method revealed an elusive photochemical process involving intermediate electronic configurations

    Development of an anatomical carotid artery flow phantom for the calibration of doppler ultrasound systems

    Get PDF
    Cardiovascular diseases are responsible for over 50% of all deaths in the UK. Current measurement techniques involve non-invasive Doppler ultrasound imaging of blood velocity, however it is known that measured velocity may be in error by typically 20-60%. This paper presents the development of anatomically correct tissue equivalent vessels for calibration of Doppler ultrasound by particle imaging techniques. Patient specific arterial MRI data is used as the basis for construction of a 3D CAD model. The model was modified to simulate varying degrees of stenosis (narrowing). The arterial geometry is fabricated by Stereolithography to generate investment cast patterns from low melting point alloy. The expendable cores are then used in the construction of optically transparent models for particle image velocimetry (PIV) analysis and for agar models using an acoustically matched tissue mimic material for Doppler ultrasound measurement. Issues concerning the fabrication of models for direct comparison of Doppler and PIV data will be discussed

    Anatomical flow phantoms of the carotid bifurcation: potential application in training and assessment of endovascular device deployment

    No full text
    Doppler ultrasound is widely used in the diagnosis and monitoring of arterial disease. Current clinical measurement systems make use of continuous and pulsed ultrasound to measure blood flow velocity; however, the uncertainty associated with these measurements is great, which has serious implications for the screening of patients for treatment. Because local blood flow dynamics depend to a great extent on the geometry of the affected vessels, there is a need to develop anatomically accurate arterial flow phantoms with which to assess the accuracy of Doppler blood flow measurements made in diseased vessels. In this paper, we describe the computer-aided design and manufacturing (CAD-CAM) techniques that we used to fabricate anatomical flow phantoms based on images acquired by time-of-flight magnetic resonance imaging (TOF-MRI). Three-dimensional CAD models of the carotid bifurcation were generated from data acquired from sequential MRI slice scans, from which solid master patterns were made by means of stereolithography. Thereafter, an investment casting procedure was used to fabricate identical flow phantoms for use in parallel experiments involving both laser and Doppler ultrasound measurement techniques

    Associations between vascular risk factors and brain MRI indices in UK Biobank

    Get PDF
    AIMS: Several factors are known to increase risk for cerebrovascular disease and dementia, but there is limited evidence on associations between multiple vascular risk factors (VRFs) and detailed aspects of brain macrostructure and microstructure in large community-dwelling populations across middle and older age. METHODS AND RESULTS: Associations between VRFs (smoking, hypertension, pulse pressure, diabetes, hypercholesterolaemia, body mass index, and waist-hip ratio) and brain structural and diffusion MRI markers were examined in UK Biobank (N = 9722, age range 44-79 years). A larger number of VRFs was associated with greater brain atrophy, lower grey matter volume, and poorer white matter health. Effect sizes were small (brain structural R2 ≤1.8%). Higher aggregate vascular risk was related to multiple regional MRI hallmarks associated with dementia risk: lower frontal and temporal cortical volumes, lower subcortical volumes, higher white matter hyperintensity volumes, and poorer white matter microstructure in association and thalamic pathways. Smoking pack years, hypertension and diabetes showed the most consistent associations across all brain measures. Hypercholesterolaemia was not uniquely associated with any MRI marker. CONCLUSION: Higher levels of VRFs were associated with poorer brain health across grey and white matter macrostructure and microstructure. Effects are mainly additive, converging upon frontal and temporal cortex, subcortical structures, and specific classes of white matter fibres. Though effect sizes were small, these results emphasize the vulnerability of brain health to vascular factors even in relatively healthy middle and older age, and the potential to partly ameliorate cognitive decline by addressing these malleable risk factors.</p
    corecore