3 research outputs found

    Influence of the presence of different alkali cations and the amount of Fe(CN)6 vacancies on CO2 adsorption on copper hexacyanoferrates

    Get PDF
    The CO2 adsorption on various Prussian blue analogue hexacyanoferrates was evaluated by thermogravimetric analysis. Compositions of prepared phases were verified by energydispersive X-ray spectroscopy, infra-red spectroscopy and powder X-ray diffraction. The influence of different alkali cations in the cubic Fm3m structures was investigated for nominal compositions A2/3Cu[Fe(CN)6]2/3 with A = vacant, Li, Na, K, Rb, Cs. The Rb and Cs compounds show the highest CO2 adsorption per unit cell, ~3.3 molecules of CO2 at 20 \ub0C and 1 bar, while in terms of mmol/g the Na compound exhibits the highest adsorption capability, ~3.8 mmol/g at 20 \ub0C and 1 bar. The fastest adsorption/desorption is exhibited by the A-cation free compound and the Li compound. The influence of the amount of Fe(CN)6 vacancies were assessed by determining the CO2 adsorption capabilities of Cu[Fe(CN)6]1/2 (Fm3m symmetry, nominally 50% vacancies), KCu[Fe(CN)6]3/4 (Fm3m symmetry, nominally 25% vacancies), and CsCu[Fe(CN)6] (I-4m2 symmetry, nominally 0% vacancies). Higher adsorption was, as expected, shown on compounds with higher vacancy concentrations

    Large easy-axis anisotropy in the one-dimensional magnet BaMo(PO4)(2)

    Get PDF
    We present an extensive experimental and theoretical study on the low-temperature magnetic properties of the monoclinic anhydrous alum compound BaMo(PO4)(2). The magnetic susceptibility reveals strong antiferromagnetic interactions theta(CW) = -167 K and long-range magnetic order at T-N = 22 K, in agreement with a recent report. Powder neutron diffraction furthermore shows that the order is collinear, with the moments near the ac plane. Neutron spectroscopy reveals a large excitation gap Delta = 15 meV in the low-temperature ordered phase, suggesting a much larger easy-axis spin anisotropy than anticipated. However, the large anisotropy justifies the relatively high ordered moment, Neel temperature, and collinear order observed experimentally and is furthermore reproduced in a first-principles calculations by using a new computational scheme. We therefore propose BaMo(PO4)(2) to host S = 1 antiferromagnetic chains with large easy-axis anisotropy, which has been theoretically predicted to realize novel excitation continua

    Site-Specific Adsorption of CO2 in Zeolite NaK-A

    No full text
    Zeolite vertical bar Na-12 vertical bar-A is a commercial adsorbent, and its CO2-over-N-2(CH4) selectivity can be further enhanced kinetically by replacing Na+ in the 8-ring windows that control gas diffusion with large cations. In this study, samples of zeolite vertical bar Na12-xKx vertical bar-A with x = 0.0, 0.8, 2.0, and 3.0 were prepared, and the positions of adsorbed CO2 molecules were determined using in situ neutron powder diffraction through profile refinement. Adsorbed CO2 molecules were located at three different sites within the large alpha-cavities in the zeolite structure, revealing the interaction between the adsorbed CO2, and the host framework. The number of CO2 molecules at each site depends on CO2 pressure and follows site-specific CO2 isotherms described with a Langmuir model. Most of the CO2 molecules in zeolite vertical bar Na12-xKx vertical bar-A bridge two cations at neighboring 8-ring sites. These are relatively weakly physisorbed, and therefore, most of the working capacity of CO2 adsorption is related to this site. The CO2 molecules at the second most populated site are coordinated to a cation in the 8-ring plane. Some of them seemed to form chemical bonds with the O atoms of the framework as carbonate like species and acted as chemisorption. The remaining minor fraction of CO2 is directly attracted by Na+ at the 6-rings. The different positioning of physisorbed CO2 and the presence of chemisorbed CO2 was confirmed by in situ infrared spectroscopy
    corecore