1,037 research outputs found

    Reduced dynamics of Ward solitons

    Full text link
    The moduli space of static finite energy solutions to Ward's integrable chiral model is the space MNM_N of based rational maps from \CP^1 to itself with degree NN. The Lagrangian of Ward's model gives rise to a K\"ahler metric and a magnetic vector potential on this space. However, the magnetic field strength vanishes, and the approximate non--relativistic solutions to Ward's model correspond to a geodesic motion on MNM_N. These solutions can be compared with exact solutions which describe non--scattering or scattering solitons.Comment: Final version, to appear in Nonlinearit

    Laser-only adaptive optics achieves significant image quality gains compared to seeing-limited observations over the entire sky

    Get PDF
    Adaptive optics laser guide star systems perform atmospheric correction of stellar wavefronts in two parts: stellar tip-tilt and high-spatial-order laser-correction. The requirement of a sufficiently bright guide star in the field-of-view to correct tip-tilt limits sky coverage. Here we show an improvement to effective seeing without the need for nearby bright stars, enabling full sky coverage by performing only laser-assisted wavefront correction. We used Robo-AO, the first robotic AO system, to comprehensively demonstrate this laser-only correction. We analyze observations from four years of efficient robotic operation covering 15,000 targets and 42,000 observations, each realizing different seeing conditions. Using an autoguider (or a post-processing software equivalent) and the laser to improve effective seeing independent of the brightness of a target, Robo-AO observations show a 39+/-19% improvement to effective FWHM, without any tip-tilt correction. We also demonstrate that 50% encircled-energy performance without tip-tilt correction remains comparable to diffraction-limited, standard Robo-AO performance. Faint-target science programs primarily limited by 50% encircled-energy (e.g. those employing integral field spectrographs placed behind the AO system) may see significant benefits to sky coverage from employing laser-only AO.Comment: Accepted for publication in The Astronomical Journal. 7 pages, 6 figure

    Building the Evryscope: Hardware Design and Performance

    Get PDF
    The Evryscope is a telescope array designed to open a new parameter space in optical astronomy, detecting short timescale events across extremely large sky areas simultaneously. The system consists of a 780 MPix 22-camera array with an 8150 sq. deg. field of view, 13" per pixel sampling, and the ability to detect objects down to Mg=16 in each 2 minute dark-sky exposure. The Evryscope, covering 18,400 sq.deg. with hours of high-cadence exposure time each night, is designed to find the rare events that require all-sky monitoring, including transiting exoplanets around exotic stars like white dwarfs and hot subdwarfs, stellar activity of all types within our galaxy, nearby supernovae, and other transient events such as gamma ray bursts and gravitational-wave electromagnetic counterparts. The system averages 5000 images per night with ~300,000 sources per image, and to date has taken over 3.0M images, totaling 250TB of raw data. The resulting light curve database has light curves for 9.3M targets, averaging 32,600 epochs per target through 2018. This paper summarizes the hardware and performance of the Evryscope, including the lessons learned during telescope design, electronics design, a procedure for the precision polar alignment of mounts for Evryscope-like systems, robotic control and operations, and safety and performance-optimization systems. We measure the on-sky performance of the Evryscope, discuss its data-analysis pipelines, and present some example variable star and eclipsing binary discoveries from the telescope. We also discuss new discoveries of very rare objects including 2 hot subdwarf eclipsing binaries with late M-dwarf secondaries (HW Vir systems), 2 white dwarf / hot subdwarf short-period binaries, and 4 hot subdwarf reflection binaries. We conclude with the status of our transit surveys, M-dwarf flare survey, and transient detection.Comment: 24 pages, 24 figures, accepted PAS

    EvryFlare II: Rotation Periods of the Cool Flare Stars in TESS Across Half the Southern Sky

    Get PDF
    We measure rotation periods and sinusoidal amplitudes in Evryscope light curves for 122 two-minute K5-M4 TESS targets selected for strong flaring. The Evryscope array of telescopes has observed all bright nearby stars in the South, producing two-minute cadence light curves since 2016. Long-term, high-cadence observations of rotating flare stars probe the complex relationship between stellar rotation, starspots, and superflares. We detect periods from 0.3487 to 104 d, and observe amplitudes from 0.008 to 0.216 g' mag. We find the Evryscope amplitudes are larger than those in TESS with the effect correlated to stellar mass (p-value=0.01). We compute the Rossby number (Ro), and find our sample selected for flaring has twice as many intermediate rotators (0.040.44) rotators; this may be astrophysical or a result of period-detection sensitivity. We discover 30 fast, 59 intermediate, and 33 slow rotators. We measure a median starspot coverage of 13% of the stellar hemisphere and constrain the minimum magnetic field strength consistent with our flare energies and spot coverage to be 500 G, with later-type stars exhibiting lower values than earlier-types. We observe a possible change in superflare rates at intermediate periods. However, we do not conclusively confirm the increased activity of intermediate rotators seen in previous studies. We split all rotators at Ro~0.2 into Prot10 d bins to confirm short-period rotators exhibit higher superflare rates, larger flare energies, and higher starspot coverage than do long-period rotators, at p-values of 3.2 X 10^-5, 1.0 X 10^-5, and 0.01, respectively.Comment: 16 pages, 8 figures, 3 tables. Ancillary machine-readable files included. Accepted for publication in ApJ (proofs submitted). Includes significant new material, including starspot color that depends on stellar mass, more rotation periods, potential changes in activity during spin-down, and examples of binary rotator

    Robo-AO Kepler Survey IV: the effect of nearby stars on 3857 planetary candidate systems

    Get PDF
    We present the overall statistical results from the Robo-AO Kepler planetary candidate survey, comprising of 3857 high-angular resolution observations of planetary candidate systems with Robo-AO, an automated laser adaptive optics system. These observations reveal previously unknown nearby stars blended with the planetary candidate host star which alter the derived planetary radii or may be the source of an astrophysical false positive transit signal. In the first three papers in the survey, we detected 440 nearby stars around 3313 planetary candidate host stars. In this paper, we present observations of 532 planetary candidate host stars, detecting 94 companions around 88 stars; 84 of these companions have not previously been observed in high-resolution. We also report 50 more-widely-separated companions near 715 targets previously observed by Robo-AO. We derive corrected planetary radius estimates for the 814 planetary candidates in systems with a detected nearby star. If planetary candidates are equally likely to orbit the primary or secondary star, the radius estimates for planetary candidates in systems with likely bound nearby stars increase by a factor of 1.54, on average. We find that 35 previously-believed rocky planet candidates are likely not rocky due to the presence of nearby stars. From the combined data sets from the complete Robo-AO KOI survey, we find that 14.5\pm0.5% of planetary candidate hosts have a nearby star with 4", while 1.2% have two nearby stars and 0.08% have three. We find that 16% of Earth-sized, 13% of Neptune-sized, 14% of Saturn-sized, and 19% of Jupiter-sized planet candidates have detected nearby stars.Comment: Accepted to the Astronomical Journa

    Variables in the Southern Polar Region Evryscope 2016 Dataset

    Get PDF
    The regions around the celestial poles offer the ability to find and characterize long-term variables from ground-based observatories. We used multi-year Evryscope data to search for high-amplitude (~5% or greater) variable objects among 160,000 bright stars (Mv < 14.5) near the South Celestial Pole. We developed a machine learning based spectral classifier to identify eclipse and transit candidates with M-dwarf or K-dwarf host stars - and potential low-mass secondary stars or gas giant planets. The large amplitude transit signals from low-mass companions of smaller dwarf host stars lessens the photometric precision and systematics removal requirements necessary for detection, and increases the discoveries from long-term observations with modest light curve precision. The Evryscope is a robotic telescope array that observes the Southern sky continuously at 2-minute cadence, searching for stellar variability, transients, transits around exotic stars and other observationally challenging astrophysical variables. In this study, covering all stars 9 < Mv < 14.5, in declinations -75 to -90 deg, we recover 346 known variables and discover 303 new variables, including 168 eclipsing binaries. We characterize the discoveries and provide the amplitudes, periods, and variability type. A 1.7 Jupiter radius planet candidate with a late K-dwarf primary was found and the transit signal was verified with the PROMPT telescope network. Further followup revealed this object to be a likely grazing eclipsing binary system with nearly identical primary and secondary K5 stars. Radial velocity measurements from the Goodman Spectrograph on the 4.1 meter SOAR telescope of the likely-lowest-mass targets reveal that six of the eclipsing binary discoveries are low-mass (.06 - .37 solar mass) secondaries with K-dwarf primaries, strong candidates for precision mass-radius measurements.Comment: 32 pages, 17 figures, accepted to PAS

    Robo-AO Kepler Survey V: The effect of physically associated stellar companions on planetary systems

    Get PDF
    The Kepler light curves used to detect thousands of planetary candidates are susceptible to dilution due to blending with previously unknown nearby stars. With the automated laser adaptive optics instrument, Robo-AO, we have observed 620 nearby stars around 3857 planetary candidates host stars. Many of the nearby stars, however, are not bound to the KOI. In this paper, we quantify the association probability between each KOI and detected nearby stars through several methods. Galactic stellar models and the observed stellar density are used to estimate the number and properties of unbound stars. We estimate the spectral type and distance to 145 KOIs with nearby stars using multi-band observations from Robo-AO and Keck-AO. We find most nearby stars within 1" of a Kepler planetary candidate are likely bound, in agreement with past studies. We use likely bound stars as well as the precise stellar parameters from the California Kepler Survey to search for correlations between stellar binarity and planetary properties. No significant difference between the binarity fraction of single and multiple planet systems is found, and planet hosting stars follow similar binarity trends as field stars, many of which likely host their own non-aligned planets. We find that hot Jupiters are ~4x more likely than other planets to reside in a binary star system. We correct the radius estimates of the planet candidates in characterized systems and find that for likely bound systems, the estimated planetary candidate radii will increase on average by a factor of 1.77, if either star is equally likely to host the planet. We find that the planetary radius gap is robust to the impact of dilution, and find an intriguing 95%-confidence discrepancy between the radius distribution of small planets in single and binary systems.Comment: 19 pages, 12 figures, submitted to AAS Journal
    corecore