31,870 research outputs found
The study and forecasting of mid latitude cyclogeneses by means of meteostat pictures
Imperial Users onl
Fatal injuries to car occupants: analysis of health and population data
Although this report was commissioned by the Department for Transport (DfT), the findings and recommendations are those of the authors and do not necessarily represent the views of the DfT. While the DfT has made every effort to ensure the information in this document is accurate, DfT does not guarantee the accuracy, completeness or usefulness of that information; and it cannot accept liability for any loss or damages of any kind resulting from reliance on the information or guidance this document contains
Bond patterns and charge order amplitude in 1/4-filled charge-transfer solids
Metal-insulator transition accompanied by charge-ordering has been widely
investigated in quasi-one-dimensional conductors, including in particular
organic charge-transfer solids. Among such materials the 1/4-filled band
charge-transfer solids are of strong interest, because of the commensurate
nature of the charge-ordering in these systems. The period-four charge-order
pattern ...1100... here is accompanied by two distinct bond distortion
patterns, giving rise to bond-charge-density waves (BCDW) of types 1 and 2.
Using quantum Monte Carlo methods, we determine the phase diagram within the
extended Hubbard Hamiltonian that gives both types 1 and 2 BCDW in the
thermodynamic limit. We further investigate the effect of electron-electron and
electron-phonon interactions on the amount of charge disproportionation. Our
results show that between these two bond patterns, one (BCDW2) in general
coexists with a large magnitude charge order, which is highly sensitive to
electron-phonon interactions, while the other (BCDW1) is characterized by weak
charge order. We discuss the relevance of our work to experiments on several
1/4-filled conductors, focusing in particular on the materials (EDO-TTF)_2X and
(DMEDO-TTF)_2X with large amplitude charge-order.Comment: 7 pages, 8 figure
From 2D Integrable Systems to Self-Dual Gravity
We explain how to construct solutions to the self-dual Einstein vacuum
equations from solutions of various two-dimensional integrable systems by
exploiting the fact that the Lax formulations of both systems can be embedded
in that of the self-dual Yang--Mills equations. We illustrate this by
constructing explicit self-dual vacuum metrics on , where
is a homogeneous space for a real subgroup of SL(2, \C) associated
with the two-dimensional system.Comment: 9 pages, LaTex, no figure
Psychological Issues in Online Adaptive Task Allocation
Adaptive aiding is an idea that offers potential for improvement over many current approaches to aiding in human-computer systems. The expected return of tailoring the system to fit the user could be in the form of improved system performance and/or increased user satisfaction. Issues such as the manner in which information is shared between human and computer, the appropriate division of labor between them, and the level of autonomy of the aid are explored. A simulated visual search task was developed. Subjects are required to identify targets in a moving display while performing a compensatory sub-critical tracking task. By manipulating characteristics of the situation such as imposed task-related workload and effort required to communicate with the computer, it is possible to create conditions in which interaction with the computer would be more or less desirable. The results of preliminary research using this experimental scenario are presented, and future directions for this research effort are discussed
On The Orbital Evolution of Jupiter Mass Protoplanet Embedded in A Self-Gravity Disk
We performed a series of hydro-dynamic simulations to investigate the orbital
migration of a Jovian planet embedded in a proto-stellar disk. In order to take
into account of the effect of the disk's self gravity, we developed and adopted
an \textbf{Antares} code which is based on a 2-D Godunov scheme to obtain the
exact Reimann solution for isothermal or polytropic gas, with non-reflecting
boundary conditions. Our simulations indicate that in the study of the runaway
(type III) migration, it is important to carry out a fully self consistent
treatment of the gravitational interaction between the disk and the embedded
planet. Through a series of convergence tests, we show that adequate numerical
resolution, especially within the planet's Roche lobe, critically determines
the outcome of the simulations. We consider a variety of initial conditions and
show that isolated, non eccentric protoplanet planets do not undergo type III
migration. We attribute the difference between our and previous simulations to
the contribution of a self consistent representation of the disk's self
gravity. Nevertheless, type III migration cannot be completely suppressed and
its onset requires finite amplitude perturbations such as that induced by
planet-planet interaction. We determine the radial extent of type III migration
as a function of the disk's self gravity.Comment: 19 pages, 13 figure
Kink dynamics in a novel discrete sine-Gordon system
A spatially-discrete sine-Gordon system with some novel features is
described. There is a topological or Bogomol'nyi lower bound on the energy of a
kink, and an explicit static kink which saturates this bound. There is no
Peierls potential barrier, and consequently the motion of a kink is simpler,
especially at low speeds. At higher speeds, it radiates and slows down.Comment: 10 pages, 7 figures, archivin
- …