7,286 research outputs found
The Epstein-Barr Virus Episome Maneuvers between Nuclear Chromatin Compartments during Reactivation.
The human genome is structurally organized in three-dimensional space to facilitate functional partitioning of transcription. We learned that the latent episome of the human Epstein-Barr virus (EBV) preferentially associates with gene-poor chromosomes and avoids gene-rich chromosomes. Kaposi's sarcoma-associated herpesvirus behaves similarly, but human papillomavirus does not. Contacts on the EBV side localize to OriP, the latent origin of replication. This genetic element and the EBNA1 protein that binds there are sufficient to reconstitute chromosome association preferences of the entire episome. Contacts on the human side localize to gene-poor and AT-rich regions of chromatin distant from transcription start sites. Upon reactivation from latency, however, the episome moves away from repressive heterochromatin and toward active euchromatin. Our work adds three-dimensional relocalization to the molecular events that occur during reactivation. Involvement of myriad interchromosomal associations also suggests a role for this type of long-range association in gene regulation.IMPORTANCE The human genome is structurally organized in three-dimensional space, and this structure functionally affects transcriptional activity. We set out to investigate whether a double-stranded DNA virus, Epstein-Barr virus (EBV), uses mechanisms similar to those of the human genome to regulate transcription. We found that the EBV genome associates with repressive compartments of the nucleus during latency and with active compartments during reactivation. This study advances our knowledge of the EBV life cycle, adding three-dimensional relocalization as a novel component to the molecular events that occur during reactivation. Furthermore, the data add to our understanding of nuclear compartments, showing that disperse interchromosomal interactions may be important for regulating transcription
Development and Characterisation of a Gas System and its Associated Slow-Control System for an ATLAS Small-Strip Thin Gap Chamber Testing Facility
A quality assurance and performance qualification laboratory was built at
McGill University for the Canadian-made small-strip Thin Gap Chamber (sTGC)
muon detectors produced for the 2019-2020 ATLAS experiment muon spectrometer
upgrade. The facility uses cosmic rays as a muon source to ionise the quenching
gas mixture of pentane and carbon dioxide flowing through the sTGC detector. A
gas system was developed and characterised for this purpose, with a simple and
efficient gas condenser design utilizing a Peltier thermoelectric cooler (TEC).
The gas system was tested to provide the desired 45 vol% pentane concentration.
For continuous operations, a state-machine system was implemented with alerting
and remote monitoring features to run all cosmic-ray data-acquisition
associated slow-control systems, such as high/low voltage, gas system and
environmental monitoring, in a safe and continuous mode, even in the absence of
an operator.Comment: 23 pages, LaTeX, 14 figures, 4 tables, proof corrections for Journal
of Instrumentation (JINST), including corrected Fig. 8b
Power-law carrier dynamics in semiconductor nanocrystals at nanosecond time scales
We report the observation of power law dynamics on nanosecond to microsecond
time scales in the fluorescence decay from semiconductor nanocrystals, and draw
a comparison between this behavior and power-law fluorescence blinking from
single nanocrystals. The link is supported by comparison of blinking and
lifetime data measured simultaneously from the same nanocrystal. Our results
reveal that the power law coefficient changes little over the nine decades in
time from 10 ns to 10 s, in contrast with the predictions of some diffusion
based models of power law behavior.Comment: 3 pages, 2 figures, compressed for submission to Applied Physics
Letter
Optical excitations of a self assembled artificial ion
By use of magneto-photoluminescence spectroscopy we demonstrate bias
controlled single-electron charging of a single quantum dot. Neutral, single,
and double charged excitons are identified in the optical spectra. At high
magnetic fields one Zeeman component of the single charged exciton is found to
be quenched, which is attributed to the competing effects of tunneling and
spin-flip processes. Our experimental data are in good agreement with
theoretical model calculations for situations where the spatial extent of the
hole wave functions is smaller as compared to the electron wave functions.Comment: to be published in Physical Review B (rapid communication
Rapid generation of fully relativistic extreme-mass-ratio-inspiral waveform templates for LISA data analysis
The future space mission LISA will observe a wealth of gravitational-wave
sources at millihertz frequencies. Of these, the extreme-mass-ratio inspirals
of compact objects into massive black holes are the only sources that combine
the challenges of strong-field complexity with that of long-lived signals. Such
signals are found and characterized by comparing them against a large number of
accurate waveform templates during data analysis, but the rapid generation of
such templates is hindered by computing the - harmonic modes in
a fully relativistic waveform. We use order-reduction and deep-learning
techniques to derive a global fit for these modes, and implement it in a
complete waveform framework with hardware acceleration. Our high-fidelity
waveforms can be generated in under , and achieve a mismatch of
against reference waveforms that take
times longer. This marks the first time that analysis-length waveforms with
full harmonic content can be produced on timescales useful for direct
implementation in LISA analysis algorithms.Comment: 6 pages, 3 figure
Order-disorder transition in nanoscopic semiconductor quantum rings
Using the path integral Monte Carlo technique we show that semiconductor
quantum rings with up to six electrons exhibit a temperature, ring diameter,
and particle number dependent transition between spin ordered and disordered
Wigner crystals. Due to the small number of particles the transition extends
over a broad temperature range and is clearly identifiable from the electron
pair correlation functions.Comment: 4 pages, 5 figures, For recent information on physics of small
systems see http://www.smallsystems.d
- …