6,829 research outputs found

    Extreme Flood Sediment Production and Export Controlled by Reach‐Scale Morphology

    Get PDF
    Rapid earth surface evolution is discrete in nature, with short-duration extreme events having a widespread impact on landscapes despite occurring relatively infrequently. Here, we exploit a unique opportunity to identify the broad, process-based, controls on sediment production and export during extreme rainfall-runoff events through a multi-catchment analysis. A 3 hr extreme rainfall event generated significantly different impacts across three catchments, ranging from (a) sediment export exceeding two orders of magnitude more than the typical long term average to (b) a minimal impact, with this variability primarily controlled by catchment steepness and the presence of reach-scale morphological transitions caused by postglacial landscape adjustment. In any catchment worldwide where populations are at risk, we highlight the importance of combining topographic analysis with detailed mapping of channel bed material (e.g., presence of transitions between process domains) and identification of sediment sources within morphological transition zones for accurately predicting the impact of extreme events

    A low-loss, broadband antenna for efficient photon collection from a coherent spin in diamond

    Get PDF
    We report the creation of a low-loss, broadband optical antenna giving highly directed output from a coherent single spin in the solid-state. The device, the first solid-state realization of a dielectric antenna, is engineered for individual nitrogen vacancy (NV) electronic spins in diamond. We demonstrate a directionality close to 10. The photonic structure preserves the high spin coherence of single crystal diamond (T2>100us). The single photon count rate approaches a MHz facilitating efficient spin readout. We thus demonstrate a key enabling technology for quantum applications such as high-sensitivity magnetometry and long-distance spin entanglement.Comment: 5 pages, 4 figures and supplementary information (5 pages, 8 figures). Comments welcome. Further information under http://www.quantum-sensing.physik.unibas.c

    Fano resonance resulting from a tunable interaction between molecular vibrational modes and a double-continuum of a plasmonic metamolecule

    Get PDF
    Coupling between tuneable broadband modes of an array of plasmonic metamolecules and a vibrational mode of carbonyl bond of poly(methyl methacrylate) is shown experimentally to produce a Fano resonance, which can be tuned in situ by varying the polarization of incident light. The interaction between the plasmon modes and the molecular resonance is investigated using both rigorous electromagnetic calculations and a quantum mechanical model describing the quantum interference between a discrete state and two continua. The predictions of the quantum mechanical model are in good agreement with the experimental data and provide an intuitive interpretation, at the quantum level, of the plasmon-molecule coupling

    First-forbidden beta decay of 17N and 17Ne

    Full text link
    It is shown that differences, due to charge-dependent effects, in the 17N and 17Ne ground-state wave functions account for the fact that the experimentally measured branch for the beta+ decay of 17Ne to the first excited state of 17F is roughly a factor of two larger than expected on the basis of nuclear matrix elements which reproduce the corresponding beta- branch in the decay of 17N.Comment: 10 pages, no figures, to appear in Physical Review

    Quantum dot opto-mechanics in a fully self-assembled nanowire

    Get PDF
    We show that fully self-assembled optically-active quantum dots (QDs) embedded in MBE-grown GaAs/AlGaAs core-shell nanowires (NWs) are coupled to the NW mechanical motion. Oscillations of the NW modulate the QD emission energy in a broad range exceeding 14 meV. Furthermore, this opto-mechanical interaction enables the dynamical tuning of two neighboring QDs into resonance, possibly allowing for emitter-emitter coupling. Both the QDs and the coupling mechanism -- material strain -- are intrinsic to the NW structure and do not depend on any functionalization or external field. Such systems open up the prospect of using QDs to probe and control the mechanical state of a NW, or conversely of making a quantum non-demolition readout of a QD state through a position measurement.Comment: 20 pages, 6 figure

    Coherent and robust high-fidelity generation of a biexciton in a quantum dot by rapid adiabatic passage

    Get PDF
    A biexciton in a semiconductor quantum dot is a source of polarization-entangled photons with high potential for implementation in scalable systems. Several approaches for non-resonant, resonant and quasi-resonant biexciton preparation exist, but all have their own disadvantages, for instance low fidelity, timing jitter, incoherence or sensitivity to experimental parameters. We demonstrate a coherent and robust technique to generate a biexciton in an InGaAs quantum dot with a fidelity close to one. The main concept is the application of rapid adiabatic passage to the ground state-exciton-biexciton system. We reinforce our experimental results with simulations which include a microscopic coupling to phonons.Comment: Main manuscript 5 pages and 4 figures, Supplementary Information 5 pages and 3 figures, accepted as a Rapid Communication in PRB. arXiv admin note: text overlap with arXiv:1701.0130

    Muon capture on nuclei with N > Z, random phase approximation, and in-medium renormalization of the axial-vector coupling constant

    Get PDF
    We use the random phase approximation to describe the muon capture rate on 44{}^{44}Ca,48{}^{48}Ca, 56{}^{56}Fe, 90{}^{90}Zr, and 208{}^{208}Pb. With 40{}^{40}Ca as a test case, we show that the Continuum Random Phase Approximation (CRPA) and the standard RPA give essentially equivalent descriptions of the muon capture process. Using the standard RPA with the free nucleon weak form factors we reproduce the experimental total capture rates on these nuclei quite well. Confirming our previous CRPA result for the N=ZN = Z nuclei, we find that the calculated rates would be significantly lower than the data if the in-medium quenching of the axial-vector coupling constant were employed.Comment: submitted to Phys. Rev.
    corecore