6 research outputs found

    Transient thermal stresses due to axisymmetric heat supply in a semi-infinite thick circular plate

    Get PDF
    The present paper deals with the determination of thermal stresses in a semi-infinite thick circular plate of a finite length and infinite extent subjected to an axisymmetric heat supply. A thick circular plate is considered having constant initial temperature and arbitrary heat flux is applied on the upper and lower face. The governing heat conduction equation has been solved by using integral transform technique. The results are obtained in terms of Bessel’s function. The thermoelastic behavior has been computed numerically and illustrated graphically for a steel plate

    Inverse Heat Conduction Problem in a Semi-Infinite Circular Plate and its Thermal Deflection by Quasi-Static Approach

    Get PDF
    This paper concerns the inverse heat conduction problem in a semi-infinite thin circular plate subjected to an arbitrary known temperature under unsteady condition and the behavior of thermal deflection has been discussed on the outer curved surface with the help of mathematical modeling. The solutions are obtained in an analytical form by using the integral transform technique

    Fractional Order Thermoelastic Deflection in a Thin Circular Plate

    Get PDF
    In this work, a quasi-static uncoupled theory of thermoelasticity based on time fractional heat conduction equation is used to model a thin circular plate, whose lower surface is maintained at zero temperature whereas the upper surface is insulated. The edge of the circular plate is fixed and clamped. Integral transform technique is used to derive the analytical solutions in the physi-cal domain. The numerical results for temperature distributions and thermal deflection are com-puted and represented graphically for Copper material

    Inverse Heat Conduction Problem in a Semi-Infinite Cylinder and its Thermal Stresses by Quasi-Static Approach

    Get PDF
    The present paper deals with the determination of unknown temperature and thermal stresses on the curved surface of a semi-infinite circular cylinder defined as 0 ≤ r ≤ a , 0 ≤ z ≤ ∞. The circular cylinder is subjected to an arbitrary known temperature under unsteady state condition. Initially, the cylinder is at zero temperature and temperature at the lower surface is held fixed at zero. The governing heat conduction equation has been solved by using the integral transform method. The results are obtained in series form in terms of Bessel’s functions. A mathematical model has been constructed for aluminum material and illustrates the results graphically

    BRIEF NOTE ON HEAT FLOW WITH ARBITRARY HEATING RATES IN A HOLLOW CYLINDER

    No full text
    In this paper the temperature distribution is determined through a hollow cylinder under an arbitrary time dependent heat flux at the outer surface and zero heat flux at the internal boundary due to internal heat generation within it. To develop the analysis of the temperature field, we introduce the method of integral transform. The results are obtained in a series form in-terms of Bessel's functions
    corecore