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Abstract 
 
This paper concerns the inverse heat conduction problem in a semi-infinite thin circular plate 
subjected to an arbitrary known temperature under unsteady condition and the behavior of 
thermal deflection has been discussed on the outer curved surface with the help of mathematical 
modeling. The solutions are obtained in an analytical form by using the integral transform 
technique.  
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1.  Introduction 
 
The inverse thermoelastic problem consists of determination of the temperature of the heating 
medium, the heat flux on the boundary surfaces of the solid when the conditions of the 
displacement and stresses are known at the some points of the solid under consideration. 
Sabherwal [(1965), (1966)], studied inverse problem in heat conduction. Cialkowski and Graya 
(1980); Graya and Cialkowski (1981); Graya and Kozlowski (1982), investigated one 
dimensional transient thermoelastic problem and derived the heating temperature and heat flux 
on the surface of isotropic infinite slab. Ashida et al. (2006) attempted an inverse thermoelastic 
problem in an isotropic plate associated with a piezoelectric ceramic plate. Deshmukh and 
Wankhede (1996) solved an inverse problem of thermo elasticity in a thin circular plate by 
determining the temperature on the curved surface of the plate, displacement and thermal stresses 
using quasi-static approach by employing integral transform techniques. Khobragade and 
Deshmukh (1998), studied an inverse axially symmetric quasi-static problem of thermo elasticity 
for a thin clamped circular plate in which a heat flux is prescribed on an internal cylindrical 
surface of the plate and suitable heat exchange conditions are met on the upper and lower 
surfaces of the plate is solved with the help of a generalized integral transform technique. Tikhe 
and Deshmukh (1968) studied the inverse heat conduction problem in a thin circular plate and its 
thermal deflection on the outer curved surface. Recently Deshmukh et al. (1998) studied a quasi-
static thermal deflection of a thin clamped circular plate due to heat generation.    
 
In this paper we consider two dimensional non-homogeneous boundary value problem of heat 
conduction and studied the thermal deflection of a semi-infinite circular plate on the outer curved 
surface for an infinite length. A circular plate is subjected to arbitrary known temperature under 
unsteady state condition. Initially the plate is at zero temperature and the lower surface is at zero 
temperature. The governing heat conduction equation has been solved by using integral 
transform method. The results are obtained in series form in terms of Bessel’s functions. 
Mathematical model has been constructed of a semi-infinite circular plate with the help of 
numerical illustration. No one previously studied such type of problem. This is a new 
contribution to the field. 
 
The inverse problem is very important in view of its relevance to various industrial mechanics 
subjected to heating such as the main shaft of lathe, turbines, and the role of the rolling mill. 
Also, arise the quenching studies, the analysis of experimental data and measurement of 
aerodynamic heating.  
  
 
2.  Formulation of the Problem  
 
Consider a semi-infinite circular plate defined by  zar 0,0 . Let the plate be subjected 
to arbitrary known interior temperature ),( tzf  within the region ar 0 , with lower surface 

0z  is at zero temperature. Under these more realistic prescribed conditions, the unknown 
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temperature on the outer curved surface of plate at ar   and quasi-static thermal deflection due 
to unknown temperature ),( tzg are required to determine. 
 
The differential equation satisfying the deflection function  tr,  as in 3, is given as 
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where, TM  is the thermal moment of the plate defined as  
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Eat ,  and   are the coefficients of the linear thermal expansion, the Young’s modulus and 

Poisson’s ratio of the plate material respectively and 
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Since, the edge of the circular plate is fixed and clamped;  
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 at .ar                                                                                                              (5) 

 
Initially 0, when 0.T t                                                                                                    (6)            
 
The temperature of the semi-infinite circular plate satisfies the heat conduction equation, as in 
Deshmukh et al. (2009), 
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  in 0 0 0, r a,  z , t                    (7) 

 
 with the conditions 
 

),(),,( tzgtzrT    (unknown)  at , 0 ,r a z                                                                   (8) 
 

0),,( tzrT  at   0, 0 ,z   r a                                                                                           (9) 
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0),,( tzrT  at   , 0 ,z r a                                                                                          (10)  

 
),(),,( tzftzrT   (known)  at , 0 , 0 ,r a z                                                       (11) 

 
where k  is thermal diffusivity of the semi-infinite circular plate.  
 
 
Equations (1) - (11) constitute the mathematical formulation of the inverse thermoelastic 
problem in a semi-infinite circular plate.  
 
 
3.  The Solution  
 
Unknown Temperature 
 
By applying Fourier sine integral transform and its inversion over the heat conduction equation, 
one obtained the expression for temperature distribution function and unknown heating 
temperature as  
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 and 1 2, ,  are the positive roots of the transcendental equation 0)(0 nJ . 

 
 
Thermal Deflection 
 
Using equation (12) into equation (2), one obtains  
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Assume the solution of the equation (1) satisfy condition (5) as 
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It can be easily seen that the plate has been built-in-edge  
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Using equation (15) and (16) in equation (1), one obtains  
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Substituting equation (16) into equation (15), one obtains the expression for thermal deflection as   
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4.  Special Case and Numerical Calculations  
 
To construct the mathematical thermoelastic behavior of a semi-infinite circular plate, we 
considered the following functions and parameters: 
 
Set zt ezetzf  .)1(),(   with .sec5,0  tt  
 
Dimensions   
 
Radius of the circular plate 1 .a m  Thickness of a circular plate 0.2 .z m   
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Material properties   
 
The numerical calculation has been carried out for an aluminum (pure) circular plate with the 
material properties as  
 
Thermal diffusivity )(1018.84 126  smk . 
 
Density 3/2707 mkg . 
 
Specific heat kgKJc p /896 , 

 
Poisson ratio 35.0 , 
 

Coefficient of linear thermal expansion
K

at

1
102.22 6 , and 

 
Lamé constant 67.26 . 
 
 
Roots of the transcendental equation:  
 
The  ,0711.18,9309.14,7915.11,6537.28,5201.5,4048.2 654321    

6346.30,4935.27,3525.24,2116.21 10987    are the positive roots of the 

transcendental equation 0)(0 nJ . 

 

We set for convenience, 710X   and 
)1(

105




D

Eha
Y t  which assume to be the constants.  

 
The numerical calculation has been carried out with the help of computational mathematical 
software Mathcad-2000 and graphs are plotted with the help of Excel (MS Office-2003). 
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Figure 1. Temperature distribution 
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From the Figure 1, it can be observed that, the temperature decreases from the centre 0r of a 
plate to the circular boundary 1r . It is zero at the outer circular boundary 1r . 
 

 

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

r (m)

U
n

kn
o

w
n

 t
em

p
er

at
u

re

 
 

Figure 2. Unknown Temperature distributions  
 
From the Figure 2, it can be observed that the unknown temperature increases in the axial 
direction at 08.0z  and then remains constant thereafter. 
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Figure 3. Thermal deflection  
 
 
From the Figure 3, it can be observed that, for aluminum circular plate the deflection is 
maximum at the centre and it is zero at the outer circular edge. Also, the variation in the 
deflection has shown when the plate is fixed and clamped. 
  
 
5.  Discussion and Results 
 
In this paper we have extended the work of Deshmukh et al. (1996) for a two dimensional non-
homogeneous boundary value problem of heat conduction and have determined the expressions 
of temperature, unknown temperature and thermal deflection.  
 
As a special case the mathematical model is constructed for a semi-infinite thin circular plate 
made up of pure aluminum metal.  
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From the Figures 1, 2, and 3, it is observed that the temperature, unknown temperature and the 
thermal deflection respectively are negligible for an infinite length and also observed that the 
variations in temperature distribution, unknown heating temperature and thermal deflection take 
place for finite values of parameters and functions. This type of a problem has the applications in 
various industrial machines such as lathe machine and turbine. Also any particular case of 
special interest can be derived by assigning suitable values to the parameter and function in the 
expressions (12), (13) and (17).  
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