322 research outputs found

    New representation of orbital motion with arbitrary angular momenta

    Full text link
    A new formulation is presented for a variational calculation of NN-body systems on a correlated Gaussian basis with arbitrary angular momenta. The rotational motion of the system is described with a single spherical harmonic of the total angular momentum LL, and thereby needs no explicit coupling of partial waves between particles. A simple generating function for the correlated Gaussian is exploited to derive the matrix elements. The formulation is applied to various Coulomb three-body systems such as e−e−e+,ttÎŒ,tdÎŒe^-e^-e^+, tt\mu, td\mu, and αe−e−\alpha e^-e^- up to L=4L=4 in order to show its usefulness and versatility. A stochastic selection of the basis functions gives good results for various angular momentum states.Comment: Revte

    Up-Down Quark Mass Difference Effect in Nuclear Many-Body Systems

    Full text link
    A charge-symmetry-breaking nucleon-nucleon force due to the up-down quark mass difference is evaluated in the quark cluster model. It is applied to the shell-model calculation for the isovector mass shifts of isospin multiplets and the isospin-mixing matrix elements in 1s0d-shell nuclei. We find that the contribution of the quark mass difference effect is large and agrees with experiment. This contribution may explain the Okamoto-Nolen-Schiffer anomaly, alternatively to the meson-mixing contribution, which is recently predicted to be reduced by the large off-shell correction

    Structure of isobaric analog states in 91Nb populated by the 90Zr(a,t) reaction

    Get PDF
    Decay via proton emission of isobaric analog states (IAS's) in 91Nb^{91}{Nb} was studied using the 90Zr(α,t)^{90}{Zr}(\alpha,t) reaction at EαE_\alpha=180 MeV. This study provides information about the damping mechanism of these states. Decay to the ground state and low-lying phonon states in 90Zr^{90}{Zr} was observed. The experimental data are compared with theoretical predictions wherein the IAS `single-particle' proton escape widths are calculated in a continuum RPA approach. The branching ratios for decay to the phonon states are explained using a simple model.Comment: 3 figures. submitted to Phys. Lett.

    Biomechanical evaluation of two minimal access interbody cage designs in a cadaveric model

    Get PDF
    Abstract Background Different interbody grafts have been employed and evaluated for spinal fusion surgery. The Memory Metal Minimal Access Cage (MAC) is a hollow horseshoe shaped interbody fusion concept which provides a potentially major advantage with their small cage contact area and large graft space in comparison with other vertical cages. Methods This Biomechanical Cadaveric Study evaluates the primary stability and the amount of acute subsidence occurring in two new MAC cage designs; the Niti-l and Niti-s. Both cages were made of nitinol in the form of a wedge-shaped horseshoe with spikes on the edges. Differences were the higher weight and larger tranverse section area of the Niti-l due to his specific design with two different layers of thickness. Biomechanical axial compression tests were performed on ten fresh-frozen T11-L5 vertebral bodies. Results A direct relation between force at failure and BMD was found (p < 0.001). The displacements in the vertebral body at an axial force of 800 N were 1.91 mm and 1.88 mm for the NiTi-l and NiTi-s cage, respectively. The mean failure load for the NiTi-l cages was 2043 N, and 1866 N for de NiTi-s cages. No significant difference was established between the two cages. Conclusion The biomechanical strength of both NiTi-l and NiTi-s cages is good and comparable to each other with a limited amount of short-term subsidence after the initial implantation of the cage spikes into the bone

    Beta-delayed proton emission in the 100Sn region

    Full text link
    Beta-delayed proton emission from nuclides in the neighborhood of 100Sn was studied at the National Superconducting Cyclotron Laboratory. The nuclei were produced by fragmentation of a 120 MeV/nucleon 112Sn primary beam on a Be target. Beam purification was provided by the A1900 Fragment Separator and the Radio Frequency Fragment Separator. The fragments of interest were identified and their decay was studied with the NSCL Beta Counting System (BCS) in conjunction with the Segmented Germanium Array (SeGA). The nuclei 96Cd, 98Ing, 98Inm and 99In were identified as beta-delayed proton emitters, with branching ratios bp = 5.5(40)%, 5.5+3 -2%, 19(2)% and 0.9(4)%, respectively. The bp for 89Ru, 91,92Rh, 93Pd and 95Ag were deduced for the first time with bp = 3+1.9 -1.7%, 1.3(5)%, 1.9(1)%, 7.5(5)% and 2.5(3)%, respectively. The bp = 22(1)% for 101Sn was deduced with higher precision than previously reported. The impact of the newly measured bp values on the composition of the type-I X-ray burst ashes was studied.Comment: 15 pages, 14 Figures, 4 Table

    Detection of the Natural Alpha Decay of Tungsten

    Full text link
    The natural alpha decay of 180W has been unambiguously detected for the first time. The alpha peak is found in a (gamma,beta and neutron)-free background spectrum. This has been achieved by the simultaneous measurement of phonon and light signals with the CRESST cryogenic detectors. A half-life of T1/2 = (1.8 +- 0.2) x 10^18 y and an energy release of Q = (2516.4 +- 1.1 (stat.) +- 1.2 (sys.)) keV have been measured. New limits are also set on the half-lives of the other naturally occurring tungsten isotopes.Comment: Submitted to Physical Review C Revised versio

    Self-Consistent Velocity Dependent Effective Interactions

    Get PDF
    The theory of self-consistent effective interactions in nuclei is extended for a system with a velocity dependent mean potential. By means of the field coupling method, we present a general prescription to derive effective interactions which are consistent with the mean potential. For a deformed system with the conventional pairing field, the velocity dependent effective interactions are derived as the multipole pairing interactions in doubly-stretched coordinates. They are applied to the microscopic analysis of the giant dipole resonances (GDR's) of 148,154Sm{}^{148,154}Sm, the first excited 2+2^+ states of Sn isotopes and the first excited 3−3^- states of Mo isotopes. It is clarified that the interactions play crucial roles in describing the splitting and structure of GDR peaks, in restoring the energy weighted sum rule, and in reducing the values of B(Eλ)B(E\lambda).Comment: 35 pages, RevTeX, 7 figures (available upon request), to appear in Phys.Rev.

    Extended Hauser-Feshbach Method for Statistical Binary-Decay of Light-Mass Systems

    Get PDF
    An Extended Hauser-Feshbach Method (EHFM) is developed for light heavy-ion fusion reactions in order to provide a detailed analysis of all the possible decay channels by including explicitly the fusion-fission phase-space in the description of the cascade chain. The mass-asymmetric fission component is considered as a complex-fragment binary-decay which can be treated in the same way as the light-particle evaporation from the compound nucleus in statistical-model calculations. The method of the phase-space integrations for the binary-decay is an extension of the usual Hauser-Feshbach formalism to be applied to the mass-symmetric fission part. The EHFM calculations include ground-state binding energies and discrete levels in the low excitation-energy regions which are essential for an accurate evaluation of the phase-space integrations of the complex-fragment emission (fission). In the present calculations, EHFM is applied to the first-chance binary-decay by assuming that the second-chance fission decay is negligible. In a similar manner to the description of the fusion-evaporation process, the usual cascade calculation of light-particle emission from the highly excited complex fragments is applied. This complete calculation is then defined as EHFM+CASCADE. Calculated quantities such as charge-, mass- and kinetic-energy distributions are compared with inclusive and/or exclusive data for the 32^{32}S+24^{24}Mg and 35^{35}Cl+12^{12}C reactions which have been selected as typical examples. Finally, the missing charge distributions extracted from exclusive measurements are also successfully compared with the EHFM+CASCADE predictions.Comment: 34 pages, 6 Figures available upon request, Phys. Rev. C (to be published

    Competing electric and magnetic excitations in backward electron scattering from heavy deformed nuclei

    Get PDF
    Important E2E2 contributions to the (e,eâ€Č)(e,e^{\prime}) cross sections of low-lying orbital M1M1 excitations are found in heavy deformed nuclei, arising from the small energy separation between the two excitations with IπK=2+1I^{\pi}K = 2^+1 and 1+1^+1, respectively. They are studied microscopically in QRPA using DWBA. The accompanying E2E2 response is negligible at small momentum transfer qq but contributes substantially to the cross sections measured at Ξ=165∘\theta = 165 ^{\circ} for 0.6<qeff<0.90.6 < q_{\rm eff} < 0.9 fm−1^{-1} (40≀Ei≀7040 \le E_i \le 70 MeV) and leads to a very good agreement with experiment. The electric response is of longitudinal C2C2 type for Ξ≀175∘\theta \le 175 ^{\circ} but becomes almost purely transverse E2E2 for larger backward angles. The transverse E2E2 response remains comparable with the M1M1 response for qeff>1.2q_{\rm eff} > 1.2 fm−1^{-1} (Ei>100E_i > 100 MeV) and even dominant for Ei>200E_i > 200 MeV. This happens even at large backward angles Ξ>175∘\theta > 175 ^{\circ}, where the M1M1 dominance is limited to the lower qq region.Comment: RevTeX, 19 pages, 8 figures included Accepted for publication in Phys Rev

    A proposed reaction channel for the synthesis of the superheavy nucleus Z = 109

    Full text link
    We apply a statistical-evaporation model (HIVAP) to calculate the cross sections of superheavy elements, mainly about actinide targets and compare with some available experimental data. A reaction channel 30^{30}Si + 243^{243}Am is proposed for the synthesis of the element Z = 109 and the cross section is estimated.Comment: 4 pages, 2 figures, 2 tables; two typos are corrected in Ref. [12] and [19
    • 

    corecore